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a b s t r a c t

Data sparsity is a common issue to train machine learning tools such as neural networks for
engineering and scientific applications, where experiments and simulations are expensive. Recently
physics-constrained neural networks (PCNNs) were developed to reduce the required amount of
training data. However, the weights of different losses from data and physical constraints are adjusted
empirically in PCNNs. In this paper, a new physics-constrained neural network with the minimax archi-
tecture (PCNN-MM) is proposed so that the weights of different losses can be adjusted systematically.
The training of the PCNN-MM is searching the high-order saddle points of the objective function. A
novel saddle point search algorithm called Dual-Dimer method is developed. It is demonstrated that
the Dual-Dimer method is computationally more efficient than the gradient descent ascent method
for nonconvex–nonconcave functions and provides additional eigenvalue information to verify search
results. A heat transfer example also shows that the convergence of PCNN-MMs is faster than that of
traditional PCNNs.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Machine learning (ML) models such as neural networks and
eep learning models have been applied successfully in diverse
ields. Nevertheless, data sparsity is still the main challenge to
pply these models to solve complex scientific and engineering
roblems. The root cause is the ‘‘curse of dimensionality’’ in
raining these models. Training algorithms need to explore and
xploit in a very high dimensional parameter space to search the
ptimal parameters for complex models. When the dimension
ncreases, the required amount of training data grows exponen-
ially in order to cover the space and ensure the convergence of
raining. Because data acquisitions in scientific experiments and
igh-fidelity engineering simulations are very costly, it is difficult
o collect enough training data to fully train complex models.
redictions from those models will not be reliable because of
verfitting.
Recently, physics-constrained machine learning emerged as
promising approach to alleviate the issue of data sparsity. In

his approach, prior knowledge in science and engineering is
ncorporated as constraints to guide the training of ML models.
n the training of physics-constrained neural networks (PCNNs)
Dissanayake, & Phan-Thien, 1994; Jianyu, Siwei, Yingjian, & Yap-
ng, 2003; Liu, & Wang, 2019; Mai-Duy, & Tran-Cong, 2001; Raissi,
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893-6080/© 2021 Elsevier Ltd. All rights reserved.
Perdikaris, & Karniadakis, 2019; Souza De Cursi, & Koscianski,
2007; Zhu, Zabaras, Koutsourelakis, & Perdikaris, 2019), physical
models serve as the constraints and regularize the training loss.
It has been shown that the required amount of training data can
be reduced by adding physical constraints as the regularization
terms. However, the training efficiency is sensitively dependent
on the weights associated with the different losses with respect
to data and physical constraints. In existing PCNNs, the weights
were either fixed or adjusted empirically. Systematic approaches
for weight adjustment are needed.

In this work, we propose a new formulation of PCNN to sys-
tematically search the optimal weights of different losses. The
training of the PCNN is formulated as a minimax problem instead
of minimization. The PCNN with the minimax architecture is
called PCNN-MM. The training of the PCNN-MM is searching the
high-order saddle points of the objective function. The order of
saddle points indicates the number of negative eigenvalues of
the Hessian matrix. Most of the existing saddle point search
algorithms only find first-order saddle points. The traditional gra-
dient descent ascent (GDA) algorithm for high-order saddle points
has the convergence issue for nonconvex–nonconcave functions,
where the functions are neither convex in the subspace for mini-
mization nor concave in the subspace for maximization. We also
propose a novel saddle point search algorithm called Dual-Dimer
method to search high-order saddle points during the training
of the PCNN-MM. Two major contributions of this study include
the new PCNN-MM formulation to systematically train physics-
constrained neural networks and the Dual-Dimer algorithm to

https://doi.org/10.1016/j.neunet.2020.12.028
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
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earch high-order saddle points of nonconvex–nonconcave func-
ions.

In the remainder of this paper, the state of the art of physics-
onstrained machine learning will be reviewed in Section 2. The
ackground of our previous work (Liu & Wang, 2019) in the
raining of PCNNs will be introduced. Existing saddle point search
ethods will also be reviewed. In Section 3, the proposed PCNN-
M formulation and the Dual-Dimer algorithm will be described.
he local convergence analysis of the Dual-Dimer algorithm is
lso included. In Section 4, the proposed Dual-Dimer algorithm
s evaluated using three nonconvex–nonconcave analytical func-
ions, including a four-dimensional (4D) Rastrigin function, a 4D
ckley function, and a 20D Styblinski–Tang function. In Section 5,
heat transfer problem is used to demonstrate the effectiveness
f the Dual-Dimer algorithm, where the evolution of the 2D
emperature distribution is predicted. The performance of the
CNN-MM trained by the Dual-Dimer method is compared with
he PCNN with the adaptive weighting scheme and the PCNN-MM
rained by the GDA method. The convergence speed and stability
f different models are also tested.

. Background

The background of physics-constrained machine learning is
rovided in Section 2.1. Our previous work (Liu & Wang, 2019)
n the training of PCNNs with the adaptive weighting scheme is
ntroduced in Section 2.2. The training of the proposed PCNN-MM
s to find the high-order saddle points of the loss function. The
xisting saddle point search methods are reviewed in Section 2.3.

.1. Physics-constrained machine learning

The basic idea of physics-constrained machine learning is to
ncorporate prior knowledge into ML models as constraints so
hat they can guide the training process. For example, the prior
nowledge of the architecture and connection weights was in-
orporated into a neural network as constraints to improve the
raining efficiency (Han, & Huang, 2008). The prior knowledge
f functions and their derivatives was embedded into support
ector regression as constraints to reduce the approximation
rror (Lauer, & Bloch, 2008). Analytical relationships were also
ncorporated as the penalty terms in the objective function of
eural networks to improve the prediction capability (Jia et al.,
019; Nagarajan et al., 2019; Read et al., 2019).
Neural networks have been used as surrogate models to ap-

roximate the solutions of ordinary differential equations (ODEs)
r partial differential equations (PDEs) with reduced computa-
ional time. It was shown that neural networks such
s multi-layer perceptron (MLP) and radial basis function (RBF)
eural networks can solve ODEs and PDEs with higher accu-
acy and lower memory requirement than traditional numerical
ethods (Shirvany, Hayati, & Moradian, 2009). The prior knowl-
dge of initial and boundary conditions can be incorporated in
he trial solutions to improve the training efficiency of neural
etworks (Lagaris, Likas, & Fotiadis, 1998; Shekari Beidokhti, &
alek, 2009). However, it may be difficult to find trial solutions

or boundary value problems which are defined on irregular
oundaries. To solve this problem, a MLP-RBF synergy model
Lagaris, Likas, & Papageorgiou, 2000) was developed, where the
irst part of the trial solution was replaced by the RBF neural
etwork so that the boundary conditions on irregular boundaries
an be satisfied. In addition, in the constrained backpropagation
raining (Di Muro, & Ferrari, 2008; Ferrari, & Jensenius, 2008;
e, Reif, & Unbehauen, 2000; Rudd, Muro, & Ferrari, 2014), the
rior knowledge of boundary conditions was explicitly embedded

s equality constraints and imposed on the weights of neural
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networks. Moreover, the prior knowledge of model forms and
boundary conditions can be embedded as regularization terms in
the loss function of a neural network to solve ODEs (Bellamine,
Almansoori, & Elkamel, 2015; Malek, & Shekari Beidokhti, 2006).
The prior knowledge can also be embedded as regularization
terms after transforming the original PDEs into their weighted
residual forms (Dissanayake & Phan-Thien, 1994). Similarly, the
original model forms and boundary conditions can be directly
incorporated as regularization terms into PCNNs (Jianyu et al.,
2003; Mai-Duy & Tran-Cong, 2001; Raissi et al., 2019; Zhu et al.,
2019). Regularization parameters can be introduced to control the
trade-off between data fitting and physics-based regularization
(Souza De Cursi & Koscianski, 2007).

The effectiveness of PCNNs has been demonstrated in the
above work. The training of PCNNs was formulated as the mini-
mization of a hybrid cost or loss function. The relative importance
of training data and prior knowledge are adjusted by changing the
weights of different losses. The drawback of this training scheme
is that the weights of different losses are fixed or empirically
determined, which affects the training efficiency.

2.2. Physics-Constrained Neural Network (PCNN) with adaptive
weighting scheme

The training of PCNNs with the adaptive weighting scheme
(Liu & Wang, 2019) can improve the training efficiency. The
scheme is introduced as follows: Suppose that a time-dependent
parametric PDE is given by

D [u (t, x)] = P
(
u,

∂u
∂t

,
∂u
∂x

,
∂2u
∂t2

,
∂2u
∂x2

, . . .

)
= f (t, x) , t ∈ [0, T ] , x ∈ Ω, (1)

where D [·] is the differential operator, u (t, x) is the true solution
to be found, f (t, x) is a source or sink term, t is the time, x =

(x1, x2, . . . , xn) is the spatial vector, and Ω ∈ Rn denotes the
definition domain. This general PDE is subject to initial conditions

Λ [u (0, x)] = g (x) (2)

and boundary conditions

Γ [u (t, xs)] = h (t, xs) , t ∈ [0, T ] , xs ∈ ∂Ω, (3)

where Λ [·] and Γ [·] are also differential operators, and ∂Ω is
the boundary of the definition domain.

The PCNN with a multilayer perceptron structure can approx-
imate the true solution u (t, x). The network includes one input
layer (t, x), multiple hidden layers, and one output layer U (t, x).
The weights w of the PCNN can be trained by minimizing the
mean squared loss or total cost function (Liu & Wang, 2019)

min
w

E (w) = λTET (w) + λPEP (w) + λIEI (w) + λsEs (w) , (4)

where ET is the loss caused by the discrepancy between the
training data and the PCNN prediction, EP , EI , and ES are the
losses due to the violations of the model, initial conditions, and
boundary conditions as specified by Eqs. (1)–(3) respectively. The
weights of different losses λT , λP , λI , and λS also satisfy the
constraint λT + λP + λI + λs = 1.

The adaptive scheme is to assign the weights of different losses
s

i =
Ei

ET + EP + EI + Es
, i ∈ {T , P, I, S} (5)

for each iteration of the training process. That is, the weights
are proportional to the individual losses respectively. It has been
demonstrated that the adaptive weighting scheme helps improve
the training efficiency of a PCNN. However, this adaptive weight-
ing scheme is still empirical. The proposed new minimax archi-
tecture enables systematic weight adjustment.
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.3. Saddle point search methods

The training of our new PCNN-MM is searching high-order
addle points. Various saddle point search algorithms have been
eveloped (Alhat, Lasrado, & Wang, 2008). These include surface
alking algorithm (Simons, Jørgensen, Taylor, & Ozment, 1983),
HS method (Dewar, Healy, & Stewart, 1984), partitioned ra-
ional function optimization method (Banerjee, Adams, Simons,
Shepard, 1985), activation–relaxation technique (Mousseau, &
arkema, 1998), dimer method (Henkelman, & Jónsson, 1999;
eyden, Bell, & Keil, 2005; Kästner, & Sherwood, 2008), nudged
lastic band (Henkelman, & Jónsson, 2000; Henkelman, Uberuaga,
Jónsson, 2000), and curve swarm method (He, & Wang, 2013,
015; Tran, He, & Wang, 2018; Tran, Liu, He-Bitoun, & Wang,
020). However, these methods can only identify first-order sad-
le points instead of high-order ones.
The well-known GDA algorithm has been widely used to

earch saddle points. In the past decade, the GDA algorithm has
een applied to solve the nonconvex–nonconcave minimax prob-
ems, which arise from game theory (Leyton-Brown, & Shoham,
008), generative adversarial networks (Goodfellow et al., 2014),
nd robust optimization (Beyer, & Sendhoff, 2007). However, it
as difficulty to converge to the saddle points of the nonconvex–
onconcave functions (Daskalakis, & Panageas, 2018). Some GDA
xtensions are also available. For instance, a proximally guided
tochastic subgradient method (Rafique, Liu, Lin, & Yang, 2018)
as proposed to solve a class of weakly-convex–concave mini-
ax problems. A multi-step GDA algorithm (Nouiehed, Sanjabi,
uang, Lee, & Razaviyayn, 2019) and a proximal dual implicit
ccelerated gradient algorithm (Thekumparampil, Jain, Netrapalli,
Oh, 2019) were developed to solve the nonconvex but concave
inimax problems. Two-time-scale GDA (Heusel, Ramsauer, Un-

erthiner, Nessler, & Hochreiter, 2017) was shown to converge
o stationary local Nash equilibria under certain strong condi-
ions. Symplectic gradient adjustment (SGA) algorithm (Balduzzi,
acaniere, Martens, Foerster, Karl et al., 2018) was proposed to
earch stable fixed points in general games, including poten-
ial games and Hamiltonian games. Hessian-based algorithms
Adolphs, Daneshmand, Lucchi, & Hofmann, 2019; Mazumdar,
ordan, & Sastry, 2019) were developed to search local saddle
oints in the nonconvex–nonconcave settings. However, the com-
utation of the Hessian matrix is expensive for high-dimensional
roblems.

. Methodology

Here, we propose a new generic formulation of physics-
onstrained neural networks with the minimax architecture. The
djustment of weights associated with physical constraints can
e done systematically during the training process. A new high-
rder saddle point search method is also developed to train the
ew PCNNs with nonconvex–nonconcave objective functions. The
ormulation of the PCNN-MM is described in Section 3.1. The
eneric Dual-Dimer saddle point search method is introduced in
ection 3.2.

.1. Physics-Constrained Neural Network with Minimax Architecture
PCNN-MM)

The training of the PCNN-MM is to solve the minimax problem

min
w

max
α

E (w,α) = λT (α) ET (w) + λP (α) EP (w) + λI (α) EI (w)

+ λs (α) Es (w) , (6)

here the weights of different losses λT , λP , λI , and λS are now
unctions of parameters α = α , α , α , α . The formulation in
( T P I S)
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q. (6) can be regarded as a generalization of the formulation in
q. (4). Training is to minimize the possible loss for a worst-case
maximum loss) scenario. That is, we perform the maximization
f the total loss E (w,α) over the parameter subspace of α and

the minimization of the total loss over the parameter subspace of
w. During the training of the PCNN-MM, the weights of different
losses λ’s will be adjusted to maximize the total loss E (w,α) in α
ubspace, whereas the weights of the neural network w’s will be
uned to minimize the total loss E (w,α). When one of the losses
is larger than the other ones, its corresponding weight tends to
increase to emphasize the importance of that particular loss so
that the total loss is maximized. To counteract, the weights of
the neural network will be adjusted to minimize the total loss so
that the total loss can be reduced faster. That is how the weights
of different losses are systematically adjusted. In this work, the
weights of different losses are defined as the softmax functions
as

λi (α) =
exp (αi)

exp (αT ) + exp (αP) + exp (αI) + exp (αS)
,

i ∈ {T , P, I, S}. (7)

After applying softmax functions, the range of the weights of
different losses λi will be in the interval [0, 1], and they will add
up to one.

Let θ = (w,α) denote the optimization parameters for objec-
tive function E. The training of the PCNN-MM is to find a minimax
point or saddle point on a high-dimensional energy landscape
E. The training of the PCNN-MM, which is to solve the minimax
problem in Eq. (6), is equivalent to finding a saddle point θ∗ =

(w∗,α∗) such that

E
(
w∗,α

)
≤ E

(
w∗,α∗

)
≤ E

(
w,α∗

)
(∀w ∈ RD, ∀α ∈ R4). (8)

That is, the saddle point is the minimum in w subspace and maxi-
mum in α subspace. The sufficient conditions for θ∗ = (w∗,α∗) to
be the desired saddle point are: (1) the gradients of the objective
function with respect to (w,α) are zeros, i.e., ∇wE (θ∗) = 0 and
∇αE (θ∗) = 0; (2) the second derivatives ∇

2
wE (θ∗) in the w sub-

space are positive semi-definite; and (3) the second derivatives
∇

2
αE (θ∗) in the α subspace are negative semi-definite.

3.2. The dual-dimer method

It is known that the steepest step ∆θ to reach a stationary
point (local minimum, local maximum, or saddle point) can be
obtained by Newton’s method

∆θ = H−1f =

∑
i

(vi · f) vi
βi

, (9)

where f = −∇E is the force, H is the Hessian matrix, vi is the
eigenvector, and βi is the corresponding eigenvalue. The draw-
back of the gradient descent method is not the search direction
but the size of the step along each eigenvector direction. There-
fore, a small step should be taken along the direction vi when the
corresponding eigenvalue βi is small. By rescaling the gradients in
each direction with the inverse of the corresponding eigenvalue,
the Newton’s method in Eq. (9) can accelerate the convergence.
However, in high-dimensional problems, the computations of all
eigenvectors and eigenvalues are very expensive.

The Dual-Dimer method is designed to improve the computa-
tional efficiency for high-dimensional problems. Let βs denote the
minimum eigenvalue of ∇

2
wE (θ) with its corresponding eigen-

vector vs, and βl denote the maximum eigenvalue of ∇
2
αE (θ)

with its corresponding eigenvector vl. By augmenting the gradient
descent ascent with the rescaled projections of the force along
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he extreme eigenvectors (vs, vl), the step to reach the desired
igh-order saddle point in the Dual-Dimer method is given by

θ = (∆θw, ∆θα) + (∆θs, ∆θl) = η (−∇wE (θ) , ∇αE (θ))

+

(
−

(vs · ∇wE (θ)) vs
|βs|

,
(vl · ∇αE (θ)) vl

|βl|

)
, (10)

here ∆θw is the gradient descent sub-step given by the first-
rder gradient-based optimization method (Kingma, & Ba, 2014)
n the w subspace, and ∆θα is the gradient ascent sub-step in the
subspace. η is the learning rate for the gradient descent ascent

ub-steps. ∆θs is the projection of the force along the vs direction,
nd ∆θl is the projection of the force along the vl direction. With
ugmented sub-steps ∆θs and ∆θl, it is expected that at the end
f the training ∇

2
wE (θ∗) does not have negative eigenvalues in w

nd ∇
2
αE (θ∗) does not have positive eigenvalues in α. Therefore,

he use of the extreme eigenvalues and eigenvectors in the Dual-
imer method is to make sure that the high-order saddle points
re found.
In the original dimer method (Henkelman & Jónsson, 1999;

eyden et al., 2005; Kästner & Sherwood, 2008), a dimer is
otated to find the minimum curvature direction and then trans-
ated to a first-order saddle point. The minimum curvature di-
ection corresponds to the extreme eigenvector in the minimum
ubspace for the first-order saddle point. In the proposed Dual-
imer method, the way to calculate extreme eigenvalues and
igenvectors for first-order saddle points in the original dimer
ethod is adopted and extended to calculate the extreme values

n both the minimum and maximum subspaces for high-order
addle points. The proposed Dual-Dimer method is also different
rom the dimer method by rescaling the step sizes along the
xtreme eigenvectors with the inverse of the extreme eigenval-
es. The extreme eigenvalues (βs, βl) and eigenvectors (vs, vl) are
omputed by rotating two dimers in the subspaces of w and α
ithout expensive calculations of the Hessian matrix H. The first
imer in the w subspace is composed of two endpoints θ1 and θ2,
hich are slightly displaced by the fixed dimer length 2∆R. The

ocations of the endpoints θ1 and θ2 are given by

θ1 = θ0 + ∆Rn

θ2 = θ0 − ∆Rn,
(11)

here n is the unit vector along the dimer axis and θ0 is the
idpoint of the dimer. Here, the components of n in the w
ubspace are nonzero, whereas the components of n in the α
ubspace are always zero. Therefore, the rotation of the first
imer is confined in the w subspace. The dimer axis n is rotated
nto the smallest curvature direction of the potential energy C (n)

t the dimer midpoint θ0, which is to solve the minimization
roblem

min
n

C (n) = nTHn ≈
(f2 − f1) · n

2∆R
, (12)

here H is the Hessian matrix at the dimer midpoint θ0. f1 =

∇E (θ1) and f2 = −∇E (θ2) are the forces at the locations θ1
nd θ2, respectively. It is noted that only first derivatives are
equired to estimate curvatures in Eq. (12). This is the reason
hat the Dual-Dimer method is computationally efficient. Fur-
hermore, the curvature C (n) becomes the eigenvalue if n is the
igenvector of the Hessian matrix. Once the smallest curvature
(n) is found, the minimum eigenvalue βs in the w subspace is
qual to C (n) and the components of n in thew subspace become
he extreme eigenvector vs. The minimization problem in Eq. (12)
s numerically solved by rotating the dimer. The details can be
ound in the original dimer method (Henkelman & Jónsson, 1999;
eyden et al., 2005; Kästner & Sherwood, 2008).
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Similarly, the second dimer in the α subspace is composed of
wo endpoints θ3 and θ4 with their locations given by

θ3 = θ0 + ∆Rm

θ4 = θ0 − ∆Rm,
(13)

here m is the unit vector along the dimer axis. Here, the
omponents of m in the α subspace are nonzero, whereas the
omponents of m in the w subspace are always zero. Therefore,
he rotation of the second dimer is confined in the α subspace.
he dimer axis m is rotated into the largest curvature direction of
he potential energy, which is to solve the maximization problem

ax
m

C (m) = mTHm ≈
(f4 − f3) · m

2∆R
, (14)

where f3 = −∇E (θ3) and f4 = −∇E (θ4) are the forces at the
locations θ3 and θ4, respectively. Once the largest curvature C (m)
is found, the maximum eigenvalue βl in the α subspace is equal
to C (m) and the components of m in the α subspace become the
extreme eigenvector vl.

The algorithm of the Dual-Dimer method is shown in Table 1.
Iteratively, the sub-steps ∆θw, ∆θα, ∆θs, and ∆θl are calculated
and the estimate saddle point location is updated. There are five
hyperparameters (m, δ, γ , η, ε) that need to be tuned in the Dual-
Dimer method. Parameterm represents the frequency of updating
extreme eigenvalues and eigenvectors. If m is small, the overall
computational cost will be high. If m is large, the estimations of
current extreme eigenvalues and eigenvectors are not accurate.
Parameter δ is introduced in the algorithm to avoid the zero-
division error. When the eigenvalue is close to zero, it means
that the curvature is very small and the saddle point degenerates.
Parameter γ means the maximum step length of ∆θs and ∆θl
to make sure that the training is converged. Parameter η is the
learning rate for the gradient descent ascent sub-steps. If η is
small, the training will be slow. If η is large, the training may be
unstable. When the objective function E or the norm of the force
∥f∥2 is less than the threshold ε, the search for the saddle points
stops. Trade-offs need to be made between the computational
accuracy and efficiency for these hyperparameters to improve
the overall performance of the Dual-Dimer method. Sensitivity
studies were done in this work to tune them. A more systematic
method to find the optimal hyperparameters is needed in future
work.

3.3. Local convergence

The local convergence of the Dual-Dimer method is analyzed
here. Let us define a fixed-point function

F (θ) = θ+ η (−∇wE (θ) , ∇αE (θ))

+

(
−

(vs · ∇wE (θ)) vs
|βs|

,
(vl · ∇αE (θ)) vl

|βl|

)
(15)

and assume that F (θ) is differentiable. The desired saddle point
θ∗ can be found by iteratively applying the fixed-point function
F (θ). If βs = 0 and βl = 0, as shown in Table 1, then the
fixed-point iteration becomes the GDA method, which is locally
stable according to Mescheder, Nowozin, and Geiger (2017) and
Nagarajan, and Kolter (2017). If βs ̸= 0 and βl ̸= 0, we have the
following lemmas and theorem. The proofs can be found in the
Appendix.

Lemma 1. The Jacobian of the loss function at the desired saddle
point θ∗ = (w∗,α∗) is

∇F
(
θ∗
)

= I + η

(
−∇

2
wE
(
θ∗
)

−∇
2
w,αE

(
θ∗
)

2 (
∗
) 2 (

∗
) )
∇α,wE θ ∇αE θ



D. Liu and Y. Wang Neural Networks 136 (2021) 112–125

w
s
l
a
K

L
β

e
b

∆

a⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
p

∆

Table 1
The Dual-Dimer algorithm.
Input: Initial optimization parameters θ0 = (w0,α0), objective function E, hyperparameters m, δ, γ , η, ε.

Output: Desired saddle point θ∗

Procedure: 1. Initialize the iteration t = 0, θt = θ0
2. Evaluate energy E (θt ) and force f = −∇E
3. When t mod m = 0, compute the extreme eigenvalues (βs, βl) and eigenvectors (vs, vl) by rotating two dimers in
the subspaces of w and α
4. Calculate ∆θw = −η∇wE (θ) and ∆θα = η∇αE (θ)

5. If |βs| > δ, ∆θs = −
(vs · ∇wE (θ)) vs

|βs|
; otherwise, ∆θs = 0; If |βl| > δ, ∆θl =

(vl · ∇αE (θ)) vl
|βl|

; otherwise, ∆θl = 0

6. If ∥∆θs∥2 > γ , ∆θs = γ
∆θs

∥∆θs∥2
; If ∥∆θl∥2 > γ , ∆θl = γ

∆θl

∥∆θl∥2
7. t = t + 1
8. Update optimization parameters by calculating ∆θ = (∆θw, ∆θα) + (∆θs, ∆θl) and θt = θt−1 + ∆θ
9. Return to step 2 until ∥f∥2 < ε or E < ε

10. Output θ∗ = θt
a⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
g

m

+

⎛⎜⎜⎝ −
1
βs

vsvTs ∇
2
wE
(
θ∗
)

−
1
βs

vsvTs ∇
2
w,αE

(
θ∗
)

−
1
βl

vlvTl ∇
2
α,wE

(
θ∗
)

−
1
βl

vlvTl ∇
2
αE
(
θ∗
)
⎞⎟⎟⎠ ,

(16)

here I is the real-valued identity matrix. If there exists an η (η > 0)
uch that the absolute values of all the eigenvalues of ∇F (θ∗) are
ess than 1, then there is an open neighborhood K of θ∗ so that for
ll θ ∈ K, the fixed-point iterations of F (θ) in Eq. (15) are stable in
. The rate of convergence is at least linear.

emma 2. Let βA = a + bi be the eigenvalues of the matrix A,
B = c+di be the eigenvalues of the matrix B, where i =

√
−1. The

igenvalues of the matrix I + ηA + B, where η > 0, lie in the unit
all if

= [2 (a + ac + bd)]2 − 4
(
a2 + b2

) (
c2 + 2c + d2

)
> 0 (17)

nd

0 < η <
−2 (a + ac + bd) +

√
∆

2
(
a2 + b2

) , if a + ac + bd ≥ 0 and c2

+ 2c + d2 > 0

max

{
0,

−2 (a + ac + bd) −
√

∆

2
(
a2 + b2

) }
< η

<
−2 (a + ac + bd) +

√
∆

2
(
a2 + b2

) , if a + ac + bd < 0

(18)

for all eigenvalues βA of A and βB of B.

Theorem 1. Let θ∗ = (w∗,α∗) be the desired saddle point, βA =

a + bi be the eigenvalues of A =

(
−∇

2
wE
(
θ∗
)

−∇
2
w,αE

(
θ∗
)

∇
2
α,wE

(
θ∗
)

∇
2
αE
(
θ∗
) )

,

βB = c + di be the eigenvalues of B =

−
1
βs
vsvTs ∇2

wE (θ∗) −
1
βs
vsvTs ∇2

w,αE (θ∗)

−
1
βl
vlvTl ∇

2
α,wE (θ∗) −

1
βl
vlvTl ∇

2
αE (θ∗)

)
, and η > 0. The fixed-

oint iterations of F (θ) in Eq. (15) are locally stable if

= [2 (a + ac + bd)]2 − 4
(
a2 + b2

) (
c2 + 2c + d2

)
> 0 (19)
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nd

0 < η <
−2 (a + ac + bd) +

√
∆

2
(
a2 + b2

) , if a + ac + bd ≥ 0 and c2

+ 2c + d2 > 0

max

{
0,

−2 (a + ac + bd) −
√

∆

2
(
a2 + b2

) }
< η

<
−2 (a + ac + bd) +

√
∆

2
(
a2 + b2

) , if a + ac + bd < 0

(20)

for all eigenvalues βA of A and βB of B.

4. Evaluation of the algorithm

The proposed Dual-Dimer algorithm is evaluated with three
analytical nonconvex–nonconcave functions. They are a 4D Ras-
trigin function, a 4D Ackley function, and a 20D Styblinski–Tang
function. The first saddle point problem of the 4D Rastrigin func-
tion is given by

min
x1,x2

max
x3,x4

E (x) =

4∑
i=1

[
x2i − 10 cos (2πxi) + 10

]
, (21)

he second problem of the 4D non-separable Ackley function is
iven by

in
x1,x2

max
x3,x4

E (x) = −20exp

⎛⎝−0.2

√1
4

4∑
i=1

x2i

⎞⎠
− exp

(
1
4

4∑
i=1

cos (2πxi)

)
+ 20 + e, (22)

The third one of the 20D Styblinski–Tang function is given by

min
x1∼x10

max
x11∼x20

E (x) =
1
2

20∑
i=1

[
x4i − 16x2i + 5xi

]
, (23)

There are multiple stationary points on the surfaces of these
analytical functions, which makes it difficult to find high-order
saddle points. Since the objective functions are analytical, the
gradients and Hessian matrices of the objective functions can be
computed easily. Therefore, the high-order saddle points can be
easily verified.

Both GDA and Dual-Dimer methods are used to search a
second-order saddle point of the 4D Rastrigin function, a second-

order saddle point of the 4D Ackley function, and a tenth-order
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able 2
yperparameters of the Dual-Dimer method in examples of analytical
unctions.
Hyperparameters Value

Frequency of updating extreme eigenvalues and eigenvectors, m 40
The parameter to avoid the zero-division error, δ 1 × 10−3

Maximum step length of ∆θs and ∆θl , γ 0.1
Learning rate for the gradient descent ascent sub-steps, η 5 × 10−4

The threshold for stopping search (∥f∥2 < ε), ε 1 × 10−4

saddle point of the 20D Styblinski–Tang function. The gradient
descent ascent steps in the GDA and Dual-Dimer methods are
given by the Adam algorithm with the learning rate of 5 × 10−4.
he dimer distance is 2∆R = 2 × 10−4. The hyperparameters of
he Dual-Dimer method in examples of analytical functions are
isted in Table 2. The search stops when the norm of the force is
ess than the threshold (∥f∥2 < ε).

The high-order saddle points found by the GDA and Dual-
imer methods are listed in Table 3. In the examples of Rastrigin
nd Ackley functions, the second-order saddle points x∗ found by
he GDA and Dual-Dimer methods are the same. In the example of
tyblinski–Tang function, two different tenth-order saddle points
ere found by the GDA and Dual methods. By changing the
andom seed, different second-order saddle points can be found
y the GDA and Dual-Dimer methods. Since variables in the Rast-
igin and Styblinski–Tang functions are separable, all off-diagonal
lements of their Hessian matrices are zeros. Therefore, the di-
gonal elements of their Hessian matrices are eigenvalues. On
he contrary, since variables in Ackley function are non-separable,
ome off-diagonal elements of its Hessian matrix are nonzero. It is
hown in Table 3 that the extreme eigenvalues (βs, βl) calculated
y the Dual-Dimer method agree well with the true extreme
igenvalues

(
β∗
s , β

∗

l

)
. It is noted that the GDA method does not

rovide additional eigenvalue information, whereas the Dual-
imer method provides. It is easy to verify that the norms of
he gradient ∥∇E (x∗)∥2 at all identified saddle points are less
han 1 × 10−4. The minimum eigenvalue βs in the minimum
ubspace at the saddle point x∗ is positive, whereas the maximum
igenvalue βl in the maximum subspace at the saddle point x∗ is
egative. It is demonstrated that the high-order saddle points of
hese nonconvex–nonconcave analytical functions can be found
y the Dual-Dimer method.
In addition, Fig. 1 shows the changes in the forces or gradients

or the two methods during the search for saddle points of the
hree analytical functions. It is seen that the force for the Dual-
imer method decreases faster than the GDA method. The results
how that the Dual-Dimer method is computationally more effi-
ient than the GDA method to find these high-order saddle points.
able 4 shows the quantitative comparison of the convergence
etween the GDA and Dual-Dimer methods. The convergence
peeds of the Dual-Dimer method are about 10 times, 9 times,
nd 2 times faster than those of the GDA method for the Rastrigin,
ckley, and Styblinski–Tang functions, respectively.

. Demonstration

In this section, a heat transfer example is used to demonstrate
he increased computational efficiency of PCNNs by adopting
he new minimax architecture. In the heat transfer problem,
he evolution of the 2D temperature distribution is predicted
y a PCNN with the adaptive weighting scheme, a PCNN-MM
rained by the GDA method, and a PCNN-MM trained by the Dual-
imer method. The PCNN setup is described in Section 5.1. The
omputational results and a quantitative comparison for different
odels are provided in Section 5.2. The convergence speed and

tability of different models are also investigated.

117
5.1. PCNN setup

In this example, the 2D heat equation with the zero Neumann
boundary condition is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − 0.01
(
uxx + uyy

)
= 0, t, x, y ∈ [0, 1] ,

u (0, x, y) = 0.5 [sin (4πx) + sin (4πy)] ,

ux (t, 0, y) = 0,

ux (t, 1, y) = 0,

uy (t, x, 0) = 0,

uy (t, x, 1) = 0.

, (24)

where u is the 2D temperature field.
The total loss function in a PCNN is defined by Eq. (4), whereas

the total loss in a PCNN-MM is defined by Eq. (6). The training loss
is

ET =
1
NT

NT∑
i=1

⏐⏐U (tTi , xTi , y
T
i

)
− T

(
tTi , xTi , y

T
i

)⏐⏐2 . (25)

The physical loss is given by

EP =
1
NP

NP∑
i=1

⏐⏐Ut
(
tPi , xPi , y

P
i

)
− 0.01

[
Uxx

(
tPi , xPi , y

P
i

)
+Uyy

(
tPi , xPi , y

P
i

)]⏐⏐2 . (26)

The initial loss is

EI =
1
NI

NI∑
i=1

⏐⏐U (0, xIi , yIi)− 0.5
[
sin
(
4πxIi

)
+ sin

(
4πyIi

)]⏐⏐2 . (27)

The boundary loss is given by

ES =
1
NS

NS∑
i=1

[⏐⏐Ux
(
tSi , 0, y

S
i

)⏐⏐2 +
⏐⏐Ux

(
tSi , 1, y

S
i

)⏐⏐2 +
⏐⏐Uy

(
tSi , x

S
i , 0
)⏐⏐2

+
⏐⏐Uy

(
tSi , x

S
i , 1
)⏐⏐2] . (28)

The weights of different losses in the traditional PCNN are ad-
justed dynamically by the adaptive weighting scheme given in
Eq. (5), whereas the weights of different losses in a PCNN-MM
are defined in Eq. (7).

The construction of the PCNN and PCNN-MMs is accomplished
by using PyTorch (Paszke et al., 2019), which is an open-source
Python library for machine learning. The PCNN and PCNN-MMs
have the same structure of 30–20–30–20, where each network
has 4 layers and the numbers of neurons in these layers are
30, 20, 30, and 20 respectively. The neural network architecture
was identified by conducting some simple sensitivity studies.
The hyperbolic tangent (tanh) function is used as the activation
function.

The training data for the heat transfer example come from the
finite-element method (FEM) solutions. The simulation domain
is x, y ∈ [0, 1] and the time period is t ∈ [0, 1]. The training
data and physical constraints are sampled uniformly in both
temporal and spatial dimensions. The amount of training data is
NT = 21 × 6 × 6 = 756, which means that there are 21 sam-
pling points in the temporal dimension, 6 sampling points in the
x-direction, and 6 in the y-direction of the spatial domain. In other
words, the grid spacing is ∆x = 0.2 and the time step is ∆t =

0.05 in the FEM solution. The number of physical constraints is
21 × 11 × 11 = 2541, where the grid spacing is ∆x = 0.1 and
the time step is ∆t = 0.05 for physical constraints. The numbers
of sampling points corresponding to the physical loss, initial loss,
and boundary loss are N = 1620, N = 121, and N = 800
P I S
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able 3
igh-order saddle points found by the GDA and Dual-Dimer methods.

4D Rastrigin function 4D Ackley function 20D Styblinski–Tang function

Saddle point x∗

⎛⎜⎝−0.9950
−0.9950
0.5025
0.5025

⎞⎟⎠
⎛⎜⎝ 0.9532

0
−2.6489
0.5255

⎞⎟⎠ xi =

⎧⎨⎩−2.9035 i = 1, 2, 3, 4, 6, 7, 10
2.7468 i = 5, 8, 9
0.1567 i = 11 ∼ 20

(GDA)

xi =

⎧⎨⎩ −2.9035 i = 1, 2, 5, 6
2.7468 i = 2, 3, 7, 8, 9, 10

0.1567 i = 11 ∼ 20
(Dual-Dimer)

True minimum eigenvalue β∗
s in the

minimum subspace
∇

2
xi=−0.9950E (x∗) = 396.53 10.64 ∇

2
xi=2.7468E (x∗) = 29.30

True maximum eigenvalue β∗

l in the
maximum subspace

∇
2
xi=0.5025E (x∗) = −392.62 −8.18 ∇

2
xi=0.1567E (x∗) = −15.85

Calculated minimum eigenvalue βs in
the minimum subspace by Dual-Dimer

396.53 10.83 29.30

Calculated maximum eigenvalue βl in
the maximum subspace by Dual-Dimer

−392.62 −8.13 −15.85
Table 4
Comparison of convergence speeds of the GDA and Dual-Dimer methods.
Methods 4D Rastrigin function 4D Ackley function 20D Styblinski–Tang function

Training
iteration

Training time
(s)

Training
iteration

Training time
(s)

Training
iteration

Training time
(s)

GDA 6840 6.56 3366 3.23 13136 44.70
Dual-Dimer 522 0.58 265 0.31 4403 16.55
Fig. 1. The change in the force during the search for saddle points of (a) a 4D Rastrigin function, (b) a 4D Ackley function, and (c) a 20D Styblinski–Tang function.
118
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Fig. 2. The predicted temperature fields from different models at t = 1: (a) the original FEM solution, (b) the PCNN with the adaptive weighting scheme, (c) the
CNN-MM trained by the GDA method, and (d) the PCNN-MM trained by the Dual-Dimer method.
espectively, which sum up to 2541. Once the training is finished,
he temperature at t = 1 will be predicted from different models
with a grid spacing of ∆x = 0.04, which is finer than the grid
spacing of the training data and physical constraints.

Both GDA and Dual-Dimer methods are used to search high-
order saddle points for the PCNN-MM formulation. The gradient
descent ascent steps in the GDA and Dual-Dimer methods are
given by the Adam algorithm with the learning rate of 5 × 10−4.
he same Adam algorithm with the learning rate of 5 × 10−4 is

used to minimize the total loss during the training of a PCNN.
The dimer distance is 2∆R = 2 × 10−4. The hyperparameters for
the Dual-Dimer method are listed in Table 5. In the heat transfer
example, the search for a saddle point stops when the total loss is
less than the threshold (E < ε). This is because that the total loss
could still be large when the norm of the force is small in the heat
transfer example. In the heat transfer example, if the true solution
u is found, then the total loss E becomes zero. That is the reason
that E < ε is used as the criterion to determine whether a good
prediction to approximate the true solution is found.

5.2. Computational results

The predicted temperature fields from different models at
t = 1 are shown in Fig. 2. The dots in the figures represent the
evaluation positions of the temperature field in the 2D domain,
where a total of 26 × 26 samples are taken. It is observed that
the predicted temperature fields from the PCNN and PCNN-MMs
are close to the FEM solution.
119
Table 5
Hyperparameters of the Dual-Dimer method in the heat transfer example.
Hyperparameters Value

Frequency of updating extreme eigenvalues and eigenvectors, m 40
The parameter to avoid the zero-division error, δ 1 × 10−3

Maximum step length of ∆θs and ∆θl , γ 1 × 10−5

Learning rate for the gradient descent ascent sub-steps, η 5 × 10−4

The threshold for stopping search (E < ε), ε 1 × 10−3

The changes in losses and weights for different models during
the training process are shown in Fig. 3. In general, most losses
for different models monotonically decrease during the training.
The total loss is less than the desired threshold at the end of
the training. However, the convergence speeds of PCNN-MMs are
greater than that of the PCNN because the problem formulations
are different. The training of the PCNN is to solve the minimiza-
tion problem, whereas the training of the PCNN-MM is to solve
the minimax problem. Note that in the training of the PCNN and
PCNN-MMs, the relative importance of the training data and prior
knowledge in the total loss function is adjusted dynamically by
changing the weights of different losses. As shown in Fig. 3(c),
the weights of the PCNN are adjusted dynamically based on
the percentages of individual losses in the total loss function.
Therefore, a larger weight will be assigned to a larger loss term.
As shown in Fig. 3(a), different losses converge at the same speed
in the later training stage of the PCNN when different losses have
the same magnitude. In the training of PCNN-MMs, the weights
of different losses are adjusted dynamically to maximize the total
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loss. Similarly, a larger weight is assigned to a larger loss term.
As shown in Fig. 3(b) and (d), the initial loss is high, whereas the
physical loss is low in the early training stage of the PCNN-MM.
Therefore, the weight of the initial loss increases, whereas the
weight of the physical loss decreases. By minimizing the possible
maximum total loss, the convergence speed of the PCNN-MM
increases. The changes in losses and weights for different PCNN-
MMs are similar because the maximum step lengths of ∆θs and
θl are small to avoid divergence. By using the information of
xtreme eigenvalues, the convergence speed of the PCNN-MM
rained by the Dual-Dimer method is slightly higher than that of
he PCNN-MM trained by the GDA method. Note that the purpose
f using the extreme eigenvalues and eigenvectors in the Dual-
imer method is not to accelerate the convergence, but to make
ure that the high-order saddle points are found.
The changes in the forces and eigenvalues during the training

f PCNN-MMs are shown in Fig. 4. As is shown in Fig. 4(a), the
otal loss can still be large when the norm of the force is small
uring the training process. That is the reason that E < ε is used
s the criterion to determine whether a good prediction is found.
t the end of the training, the forces for both PCNN-MMs are close
o zero, meaning that a critical point is found. Note that eigenval-
es are not directly provided by the GDA method. The eigenvalues
hown in Fig. 4(b) and (c) are recalculated by the Dual-Dimer
ethod. At the end of the training, the minimum eigenvalue βs in

he w subspace is positive and maximum eigenvalue β in the α
l a

120
ubspace is close to zero. This means that the desired high-order
addle point is found. The results demonstrate the effectiveness
f the proposed Dual-Dimer method.
To test the convergence speed and stability of different mod-

ls, the PCNN and PCNN-MMs were run 20 times with random
nitial weights of neural networks. The mean values of training
terations, training time, and mean squared error (MSE) for differ-
nt models are shown in Table 6, where their standard deviations
re also shown in parentheses. Fig. 5 shows that the convergence
peeds of PCNN-MMs are about 3 times faster than that of the
CNN, whereas the MSEs of predictions by PCNN-MMs at t = 1
re slightly larger than that by the PCNN. The MSEs of predictions
y the PCNN and PCNN-MMs are all less than the error threshold
= 1 × 10−3 with negligible differences. The results show the

ncreased computational efficiency of PCNNs by adopting the new
inimax architecture. The standard deviations of the training

terations and training time by PCNN-MMs are less than those
y the PCNN, whereas the standard deviations of the MSEs of
rediction by PCNN-MMs at t = 1 are slightly larger than that by
he PCNN. The results also indicate the stability of the proposed
CNN-MMs. The training times of the PCNN-MMs by the GDA
ethod and the Dual-Dimer method are similar. However, the
ual-Dimer method can provide additional eigenvalue informa-
ion to make sure that the desired high-order saddle points are
ound at the end of the training.

The above computational results demonstrate that PCNN-MMs

re computationally more efficient in training than the original
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t

Fig. 4. Forces and eigenvalues during the training of PCNN-MMs: (a) norm of force, (b) minimum eigenvalue βs in the w subspace, and (c) maximum eigenvalue βl
in the α subspace.
Table 6
Quantitative comparison for different models to solve the heat transfer problem.
Models Training iterations Training time (s) MSE of prediction

at t = 1
Minimum eigenvalue βs
in the w subspace at the
end of the training

Maximum eigenvalue βl
in the α subspace at the
end of the training

PCNN with the adaptive
weighting scheme

58497 2259.46 3.24 × 10−4
N/A N/A

(24878) (930.81) (1.62 × 10−4)

PCNN-MM with the GDA
method

15322 614.72 4.22 × 10−4
0.95 (0.78) 5.84 × 10−5

(7023) (247.48) (3.72 × 10−4) (8.19 × 10−5)

PCNN-MM with the
Dual-Dimer method

13376 560.85 5.56 × 10−4
0.71 (0.53) −6.91 × 10−5

(6035) (246.08) (4.13 × 10−4) (1.77 × 10−4)
PCNN with adaptive weighting scheme. The proposed minimax
architecture has the advantage of systematically adjusting the
weights of different losses. The results also show that the local
convergence of PCNN-MMs is stable. In addition, with the simi-
lar accuracy and efficiency of the GDA method, the Dual-Dimer
method can provide additional eigenvalue information to make
sure that the desired saddle points are found at the end of the
training.

6. Conclusions

In this work, a new physics-constrained neural network with
he minimax architecture is proposed to adjust the weights of
121
different losses systematically. The training of the PCNN-MM
is to solve a minimax problem and search for the high-order
saddle points of the nonconvex–nonconcave loss function. To
address the challenges of searching high-order saddle points, a
novel saddle point search algorithm called Dual-Dimer method
is proposed, where only first derivatives need to be calculated.
The local convergence of the Dual-Dimer method is analyzed. The
performance of the Dual-Dimer method is evaluated with three
analytical nonconvex–nonconcave loss functions. It was shown
that the Dual-Dimer method is computationally more efficient
than the GDA method to find high-order saddle points in these
analytical functions. The Dual-Dimer method also provides ad-
ditional eigenvalue information to make sure that the desired
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Fig. 5. Quantitative comparison for different models in (a) training iteration, (b) training time, and (c) MSE of prediction at t = 1.
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igh-order saddle points are found at the end of the training. A
eat transfer example is used to demonstrate the effectiveness of
he PCNN-MM, where its convergence is faster than that of the
riginal PCNN with adaptive weighting scheme.
The adjustment of hyperparameters in this study is based on

ensitivity studies. In future work, a more systematic method
o find the optimal hyperparameters will be developed so that
he computational efficiency of the Dual-Dimer method can be
urther improved. In addition, using more eigenvalues and eigen-
ectors in the Dual-Dimer method can potentially accelerate the
addle point search. Further investigation is needed. The generic
ual-Dimer method can be applied to solve other minimax prob-
ems, which arise from game theory, generative adversarial net-
orks, and robust optimization.
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Appendix

Lemma 1. The Jacobian of the loss function at the desired saddle
point θ∗ = (w∗,α∗) is

∇F
(
θ∗
)

= I + η

(
−∇

2
wE
(
θ∗
)

−∇
2
w,αE

(
θ∗
)

∇
2
α,wE

(
θ∗
)

∇
2
αE
(
θ∗
) )

+

⎛⎜⎜⎝ −
1
βs

vsvTs ∇
2
wE
(
θ∗
)

−
1
βs

vsvTs ∇
2
w,αE

(
θ∗
)

−
1
βl

vlvTl ∇
2
α,wE

(
θ∗
)

−
1
βl

vlvTl ∇
2
αE
(
θ∗
)
⎞⎟⎟⎠ ,

where I is the real-valued identity matrix. Furthermore, if there is an
η > 0 such that the absolute values of all eigenvalues of ∇F (θ∗) are
ess than 1, then there is an open neighborhood K of θ∗ so that for
ll θ ∈ K, the fixed-point iterations of F (θ) in Eq. (15) are stable in
. The rate of convergence is at least linear.

roof. Since θ∗ is a desired saddle point, we have ∇wE (θ∗) = 0,
αE (θ∗) = 0, βs ≥ 0, and βl ≤ 0. Furthermore F (θ∗) = θ∗. The
acobian ∇F (θ∗) is given by

F
(
θ∗
)

= I + η

(
−∇

2
wE
(
θ∗
)

−∇
2
w,αE

(
θ∗
)

∇
2
α,wE

(
θ∗
)

∇
2
αE
(
θ∗
) )

+ ∇

(
−

(vs · ∇wE (θ∗)) vs
|βs|

,
(vl · ∇αE (θ∗)) vl

|βl|

)
.
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∆

T

c

M

t
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b

c(

a⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

B

f βs > 0, then we have

∇

(
−

(vs · ∇wE (θ∗)) vs
|βs|

)
= ∇

(
−

(vs · ∇wE (θ∗)) vs
βs

)

= −vs ⊗ ∇

(
vs · ∇wE (θ∗)

βs

)
−

⎛⎜⎜⎜⎝vs ·

0  
∇wE

(
θ∗
)

βs

⎞⎟⎟⎟⎠∇vs

−vs ⊗

⎡⎢⎣ 1
βs

∇
(
vs · ∇wE

(
θ∗
))

+

⎛⎜⎝vs ·

0  
∇wE

(
θ∗
)⎞⎟⎠∇

1
βs

⎤⎥⎦
= −

1
βs

vs ⊗

⎡⎢⎣∇
Tvs

0  
∇wE

(
θ∗
)
+ ∇

T (
∇wE

(
θ∗
))

vs

⎤⎥⎦
= −

1
βs

vsvTs ∇
(
∇wE

(
θ∗
))

=

(
−

1
βs

vsvTs ∇
2
wE
(
θ∗
)

−
1
βs

vsvTs ∇
2
w,αE

(
θ∗
))

. (29)

imilarly, if βl < 0, we have(
(vl · ∇αE (θ∗)) vl

|βl|

)
=

(
−

1
βl

vlvTl ∇
2
α,wE

(
θ∗
)

−
1
βl

vlvTl ∇
2
αE
(
θ∗
))

. (30)

herefore, we have the Jacobian

F
(
θ∗
)

= I + η

(
−∇

2
wE
(
θ∗
)

−∇
2
w,αE

(
θ∗
)

∇
2
α,wE

(
θ∗
)

∇
2
αE
(
θ∗
) )

+

⎛⎜⎜⎝ −
1
βs

vsvTs ∇
2
wE
(
θ∗
)

−
1
βs

vsvTs ∇
2
w,αE

(
θ∗
)

−
1
βl

vlvTl ∇
2
α,wE

(
θ∗
)

−
1
βl

vlvTl ∇
2
αE
(
θ∗
)
⎞⎟⎟⎠ .

ccording to the fixed point theorem (Mescheder et al., 2017), if
here is an η > 0 such that the absolute values of the eigenvalues
f the Jacobian ∇F (θ∗) are all smaller than 1, then there is an
pen neighborhood K of θ∗ so that for all θ ∈ K , the iterates of
(θ) in Eq. (15) are stable. The rate of convergence is at least
inear.

emma 2. Let βA = a + bi be the eigenvalues of the matrix A,
B = c+di be the eigenvalues of the matrix B, where i =

√
−1. The

igenvalues of the matrix I + ηA + B, where η > 0, lie in the unit
all if

= [2 (a + ac + bd)]2 − 4
(
a2 + b2

) (
c2 + 2c + d2

)
> 0

nd

0 < η <
−2 (a + ac + bd) +

√
∆

2
(
a2 + b2

) , if a + ac + bd ≥ 0 and c2

+ 2c + d2 > 0

max

{
0,

−2 (a + ac + bd) −
√

∆

2
(
a2 + b2

) }
< η

<
−2 (a + ac + bd) +

√
∆

2
(
a2 + b2

) , if a + ac + bd < 0

for all eigenvalues βA of A and βB of B.
123
Proof. If the eigenvalues of the matrix I+ηA+B lie in the unit ball,
then |1 + ηβA + βB|

2 < 1. That is, (1 + ηa + b)2 + (ηc + d)2 < 1,
which leads to(
a2 + b2

)
η2

+ 2 (a + ac + bd) η + c2 + 2c + d2 < 0. (31)

o find the real solutions of η, we need to make sure the discrim-
nant is larger than zero, as

= [2 (a + ac + bd)]2 − 4
(
a2 + b2

) (
c2 + 2c + d2

)
> 0. (32)

wo real roots η1 =
−2(a+ac+bd)−

√
∆

2(a2+b2)
and η2 =

−2(a+ac+bd)+
√

∆

2(a2+b2)
can

be obtained. Since η > 0, we have

η2 =
−2 (a + ac + bd) +

√
∆

2
(
a2 + b2

) > 0 or
√

∆ > 2 (a + ac + bd) .

(33)

If a + ac + bd ≥ 0, then ∆ > [2 (a + ac + bd)]2. Therefore,
2
+ 2c + d2 > 0. (34)

eanwhile, it is obvious that η1 =
−2(a+ac+bd)−

√
∆

2(a2+b2)
< 0. Therefore,

he range of η should be 0 < η < η2 in order to satisfy Eq. (31). If
+ ac + bd < 0, automatically η2 =

−2(a+ac+bd)+
√

∆

2(a2+b2)
> 0 without

any further conditions. The range of η should be max {0, η1} <

η < η2 to satisfy Eq. (31).

Theorem 1. Let θ∗ = (w∗,α∗) be the desired saddle point, βA = a+

i be the eigenvalues of A =

(
−∇

2
wE
(
θ∗
)

−∇
2
w,αE

(
θ∗
)

∇
2
α,wE

(
θ∗
)

∇
2
αE
(
θ∗
) )

, βB =

+ di be the eigenvalues of B =

−
1
βs
vsvTs ∇2

wE (θ∗) −
1
βs
vsvTs ∇2

w,αE (θ∗)

−
1
βl
vlvTl ∇

2
α,wE (θ∗) −

1
βl
vlvTl ∇

2
αE (θ∗)

)
, and η > 0. The fixed-

point iterations of F (θ) in Eq. (15) are locally stable if

∆ = [2 (a + ac + bd)]2 − 4
(
a2 + b2

) (
c2 + 2c + d2

)
> 0

nd

0 < η <
−2 (a + ac + bd) +

√
∆

2
(
a2 + b2

) , if a + ac + bd ≥ 0 and c2

+ 2c + d2 > 0

max

{
0,

−2 (a + ac + bd) −
√

∆

2
(
a2 + b2

) }
< η

<
−2 (a + ac + bd) +

√
∆

2
(
a2 + b2

) , if a + ac + bd < 0

for all eigenvalues βA of A and βB of B.

Proof. This is a direct consequence of Lemmas 1 and 2.
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