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Multiphysics Simulation of
Nucleation and Grain Growth in
Selective Laser Melting of Alloys
Selective laser melting (SLM) builds parts by selectively melting metallic powders layer by
layer with a high-energy laser beam. It has a variety of applications in aerospace, medical
device, and other low-volume manufacturing. Nevertheless, the lack of fundamental under-
standing of the process-structure-property relationship for better quality control inhibits
wider applications of SLM. Recently, a mesoscale simulation approach, called phase
field and thermal lattice Boltzmann method (PF-TLBM), was developed to simulate micro-
structure evolution of alloys in SLM melt pool with simultaneous consideration of solute
transport, heat transfer, phase transition, and latent heat effect. In this paper, a nucleation
model is introduced in the PF-TLBM framework to simulate heterogeneous nucleation at
the boundary of the melt pool in SLM. A new method is also developed to estimate the
thermal flux out of the SLM melt pool model given a constant cooling rate. The effects of
latent heat and cooling rate on dendritic morphology and solute distribution are studied.
The simulation results of AlSi10Mg alloy suggest that the inclusion of latent heat is neces-
sary because it reveals the details of the formation of secondary arms, reduces the overes-
timation of microsegregation, and provides more accurate kinetics of dendritic growth.
[DOI: 10.1115/1.4046543]
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1 Introduction
As a powder bed-based additive manufacturing (AM) technique,

selective laser melting (SLM) builds three-dimensional (3D) parts
by melting layers of fine-grained metallic powders with a laser
beam. It significantly improves the manufacturability of complex
geometries and heterogeneous materials. SLM has the potential
to be widely applied in various industries including automotive,
aerospace, biomedical, energy, and other high-value low-volume
manufacturing environments. However, the lack of fundamental
understanding of the process-structure-property (P-S-P) relation-
ship of SLM becomes the bottleneck to produce defect-free, struc-
turally sound, and reliable AM parts. There is a critical need to
understand the rapid solidification process during which micro-
structures are formed and the properties of solid parts are
determined.
During the complex process of solidification, interactions

between solute transport, heat transfer, and phase transition have
significant effects on the formation of the microstructure. The
final solidified microstructure determines the mechanical strength,
thermal conductivity, corrosion resistance, and other properties of
the AM parts. A thorough understanding of the rapid solidification
process allows us to establish the P-S-P relationship for process
design and optimization. Establishing the P-S-P relationship in
high-dimensional parameter space requires a large number of
samples. Currently, the capabilities of in situ observation for
rapid solidification at the nano- and micro-scales are very limited.
Compared with experimental studies, simulation is more cost-
effective to reveal the cause-effect relations. Multiscale multiphy-
sics simulation sometimes becomes the only viable approach to
study complex phenomena.

Various models have been developed to understand and predict
microstructure evolution during solidification. These include front-
tracking, enthalpy, level-set, cellular automaton (CA), and phase
field method (PFM) [1]. Particularly, PFM and CA are the most
used methods. CA is computationally much more efficient than
PFM so that it can be applied to simulate large systems. However,
PFM [2,3] can reveal more details of dendritic growth dynamics
and side branch emission. CA predictions of anisotropic gain struc-
tures are sensitive to the choice of mesh shapes. The dendrite tip
velocities predicted by PFM agree with the Lipton-Glicksman-Kurz
model more than CA simulations [4].
PFM has been widely used to simulate dendritic growth in the

solidification processes of casting, welding, and AM [5–7].
Recently, more comprehensive models to simulate complex physi-
cal phenomena have been developed. For instance, multicomponent
multiphase field model coupled with thermodynamic databases can
simulate alloys more accurately [8]. Materials related properties
required for PFM such as interface energy and interface mobility
can be predicted from molecular dynamics when experimental
data are limited [9]. Other numerical schemes such as mesh free
method [10] have also been explored to improve the numerical
robustness from conventional finite element and finite difference
methods.
The rapid solidification in AM is a highly complex process where

it is not appropriate to make equilibrium assumptions of the thermal
field and melt flow. A multiphysics simulation approach is neces-
sary to understand the coupling effects among temperature, veloc-
ity, and phase fields. Some multiphysics models that combine CA
or PFM with other physics, including fluids and thermal, have
been developed. For instance, a 3D cellular automata finite
volume method [11] was used to predict the grain growth of
IN718 alloy inside the melt pool during AM processes. A cellular
automata lattice Boltzmann method [12,13] was proposed to simu-
late the grain texture evolution in the selective melting. Finite
element analysis has been widely employed to obtain the geometry
and thermal history of the melt pool, which can be used in the
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subsequent PFM simulation of dendritic growth [14–18]. Computa-
tional fluid dynamics analysis and PFM were also combined to
simulate the dendritic growth in the melt pool [19]. In addition,
phase field and lattice Boltzmann method (PF-LBM) [20–23] has
been widely used to simulate dendritic growth in melt flows
where LBM simulates single-phase and multiphase flows with
complex boundary conditions and multiphase interfaces. In our pre-
vious work [24–26], a phase field and thermal lattice Boltzmann
method (PF-TLBM) was developed to investigate the effects of
latent heat and forced melt flow on the dendritic morphology, con-
centration, and temperature field during SLM process. The simula-
tion results of Ti-6Al-4V showed that the consideration of
nonequilibrium temperature field and latent heat in addition to
melt flows is very necessary, because it reveals the details of the for-
mation of secondary arms and provides more realistic kinetics of
dendritic growth.
In this work, the PF-TLBM is extended to include a nucleation

model for heterogeneous nucleation and dendritic growth. Nucle-
ation affects the accuracy of simulated microstructures in SLM,
but it has only been considered in few studies of PFM simulation.
Shimono et al. [27] simulated the columnar-to-equiaxed transition
(CET) of Ti-6Al-4V alloy during the AM process by coupling
PFM with the calculation of phase diagrams (CALPHAD). A con-
tinuous Gaussian nucleation distribution was used to describe the
grain density increase with the increase in undercooling. The empir-
ical nucleation parameters, such as maximum nucleation density
and mean undercooling, were calibrated based on experimental
results. However, this empirical model missed some important
physics of nucleation compared with classical nucleation theory
(CNT). Gránásy et al. [28,29] described two methods to include
homogeneous nucleation into PFM simulations. In the first
method, Langevin noise terms were introduced in PFM as a nucle-
ation force. In the second one, the nucleation energy barrier was
determined by solving the Euler–Lagrange equations of the phase
field and composition field. PFM was also used to determine the
nucleation energy barrier for heterogeneous nucleation, where
appropriate boundary conditions were introduced at the foreign
wall to realize the required contact angle [30]. Pusztai et al. [31]
introduced Langevin noise terms in PFM to simulate homogeneous
and heterogeneous nucleation in polycrystalline. However, by intro-
ducing Langevin noises, nucleation could occur anywhere in the
simulation domain rather than the solid-liquid interface because
of the nature of stochastic partial differential equations. The
model works well for large melt pools such as in casting, but not
accurate in SLM with small melt pools. In powder-based SLM,
the size of the melt pool is usually less than 100 μm. Furthermore,
it is known that nucleation and growth occur at different time scales,
the observation of nucleation would require an impractically large
number of sample frequencies and integration cycles. Therefore,
Simmons et al. [32] replaced the Langevin noise terms in PFM
with a Poisson seeding algorithm, where viable nuclei were intro-
duced at a time-dependent nucleation rate. However, the developed
model is used for homogeneous nucleation rather than heteroge-
neous nucleation. In the work of Li et al. [33], the nucleation kinet-
ics of binary melts is calculated based on CNT. The model was
originally used to simulate polycrystalline solidification of NiCu
alloy in casting, where the clear CET was clearly shown.
However, the heterogeneous nucleation in the model occurred in
the melt pool rather than the boundary of the melt pool. In SLM,
heterogeneous nucleation tends to occur at the solid–liquid interface
at the bottom of the small melt pool as experimentally observed.
In this study, a nucleation model is introduced into the PF-TLBM

framework for simulating the microstructure evolution of alloys in
SLM. AlSi10Mg alloy is used to demonstrate the simulation frame-
work. AlSi10Mg alloy, with good weldability, hardenability and
high dynamic properties, have been widely applied in automotive
and aerospace industries. The main contribution of this work is
the simulation of nucleation and dendritic growth of alloys in the
small melt pool of SLM, where heterogeneous nucleation tends to
occur at the boundary. A method to approximate the thermal flux

out of the small melt pool for PF-TLBM is also developed, given
a constant cooling rate.
In the remainder of this paper, the formulation of PF-TLBM and

the new nucleation model are described in Sec. 2. The simulation
settings of the SLM melt pool, simulation results of AlSi10Mg
alloy, and the effects of latent heat and cooling rate on dendritic
growth are shown in Sec. 3. The quantitative analyses of thermal
history, the time evolution of solid-phase fraction, and composition
distribution are also provided.

2 Methodology
In this section, the formulation of PF-TLBM is briefly described.

The PFM formulation is introduced in Sec. 2.1. The thermal lattice
Boltzmann method (TLBM) is introduced in Sec. 2.2. More details
about PF-TLBM can be found in Ref. [25]. The phase field and
composition are calculated by solving the Allen–Cahn equation
and diffusion equation. The temperature field is obtained from
TLBM. PFM and TLBM are tightly coupled by updating and
exchanging the information of phase, composition, and temperature
fields in each iteration of the simulation. In Sec. 2.3, the new nucle-
ation model is described, which is used to simulate the heteroge-
neous nucleation in the mushy zone of the melt pool in the SLM
process.

2.1 Phase Field Method. The multiphase field method [2,21]
is used to describe the liquid–solid phase transition during the soli-
dification process. The main advantage of PFM is that the move-
ment of the interface of the microstructure is tracked implicitly
rather than explicitly. In PFM, a continuous variable named phase
field ϕ is used to keep track of the solid-phase fraction in the sim-
ulated domain. The microstructure evolution is modeled by the time
evolution of the phase field.
The kinetic equation for the phase field is given by

∂ϕ
∂t

=Mϕ σ*(n) ∇2ϕ +
π2

η2
ϕ −

1
2

( )[ ]
+
π

η

����������
ϕ(1 − ϕ)

√
ΔGV

{ }
(1)

whereMϕ is the effective interface mobility, η is the interface width,
and n = ∇ϕ/|∇ϕ| = (nx, ny) is the local normal direction of the
interface. The anisotropic interface energy stiffness is defined as

σ* = σ +
∂2σ
∂ψ2

= σ0*[1 − 3δ + 4δ(n4x + n4y )] (2)

where σ is the interface energy, ψ = arctan (ny/nx) indicates the
grain orientation, σ0* is the prefactor of interface energy stiffness,
and δ is the anisotropy strength of interface energy stiffness. The
driving force is described by

ΔGV = ΔS(Tm − T + mlCl) (3)

where ΔS= LHρ/Tl is the entropy difference between solid and
liquid phases, LH is the latent heat of fusion, ρ is the density, Tl is
the liquidus temperature, Tm is the melting temperature of pure
material, T is the current temperature, ml represents the liquidus
slope, and Cl represents the weight percentage (wt%) of solute in
the liquid phase.
The kinetic equation for the composition field is given by

∂C
∂t

= ∇ · [Dl(1 − ϕ)∇Cl] + ∇ · jat (4)

where C=ϕCs+ (1−ϕ)Cl is the overall composition of a solute in
the simulation domain and Cs is the composition of the solid phase.
During rapid solidification, the dynamic partition coefficient can be
calculated according to Aziz’s model [34]

k =
Cs

Cl
=
ke + VIλ/Dl

1 + VIλ/Dl
(5)
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where ke is the equilibrium partition coefficient, λ is the actual width
of the interface in atomic dimensions, and VI is the interface veloc-
ity. The diffusion coefficient of the liquid phase is given by

Dl = D0 exp
−ΔE
RT

( )
(6)

whereD0 is the prefactor of diffusion coefficient of liquid phase,ΔE
is activation energy, and R is gas constant. The anti-trapping current
is introduced and defined as

jat =
η

π

����������
ϕ(1 − ϕ)

√
(Cl − Cs)

∂ϕ
∂t

∇ϕ
|∇ϕ| (7)

which is used to remove the unphysical solute trapping caused by
the finite interface width.
The driving force is not calculated based on the phase diagram in

the equilibrium state. The reasons are listed as follows. The driving
force is determined by the current temperature and composition
field. The temperature evolution is simulated by TLBM, whereas
the composition field is computed by Fick’s law during rapid soli-
dification. Both the partition coefficient and diffusion coefficient of
the liquid phase are not constant. The dynamic partition coefficient
varies with the interface velocity. The diffusion coefficient of the
liquid phase varies with the temperature. Although the calculation
of the driving force is not as accurate as CALPHAD computation
[35], it is more efficient.

2.2 Thermal Lattice Boltzmann Method. In this work, the
melt is assumed to be static in the small pool for simplification.
The effect of Marangoni flow on dendritic growth will be consid-
ered in future work. TLBM [36,37] is used to calculate the temper-
ature field only in this study. TLBM is used to simulate the
temperature evolution in the melt pool and consider the effects of
the release of latent heat at the solid–liquid interface.
The heat conduction equation is given by

∂T
∂t

= ∇ · (α∇T) + q̇ (8)

where α is the thermal diffusivity. The released latent heat during
solidification is given by

q̇ =
LH
cp

∂ϕ
∂t

(9)

where cp is the specific heat capacity. Instead of solving Eq. (8)
directly, a particle distribution function of temperature gi(x, t) is uti-
lized to capture the dynamics of the system in TLBM. Particles
move dynamically between neighboring discretized lattice nodes
in TLBM. In a two-dimensional D2Q9 scheme, each node has
eight neighbors. The velocity vector along the ith direction in the
lattice with respect to a reference node is given by

ei =
(0, 0), i = 0
(±c, 0), (0, ±c), i = 1, . . . , 4
(±c, ±c), i = 5, . . . , 8

⎧⎨
⎩ (10)

where c=Δx/Δt is the lattice velocity with grid spacing Δx and
time-step Δt, and index i corresponds to a unique direction in the
lattice. The kinetic equation of particle distribution of temperature
is given by

gi(x + eiΔt, t + Δt) = gi(x, t)+ 1
τg

[geqi (x, t) − gi(x, t)] + Qi(x, t)Δt

(11)

where τg= 3α/(c2Δt)+ 0.5 is the dimensionless relaxation time,
geqi (x, t) = ωiT is the equilibrium distribution, and

Qi = 1 −
1
2τg

( )
ωiq̇ (12)

is the heat source term. In the D2Q9 scheme, the weights ωi ’s asso-
ciated with direction i’s are

ωi =
4/9, i = 0
1/9, i = 1, . . . , 4
1/36, i = 5, . . . , 8

⎧⎨
⎩ (13)

During each iteration, the temperature T can be calculated from
the particle distribution of temperature gi’s as

T =
∑
i

gi +
Δt
2
q̇ (14)

In the SLM process, heat transfer is much faster than solute dif-
fusion because thermal diffusivity can be three to four orders of
magnitude larger than solute diffusivity. In order to improve the
computational efficiency, a fine grid spacing dx is used for the
PFM simulation, whereas a coarse grid spacing Δx= 50 dx is
used for the TLBM simulation. The same time-step Δt is used for
both simulations. The results of TLBM are linearly interpolated
as the input for the PFM model, whereas the results of PFM are
averaged and transferred to the TLBM model in each iteration.
The anti-bounceback scheme [38,39] is used for the thermal bound-
ary condition. The particle distribution of temperature at the bound-
ary node g�i(xb, t + Δt), for direction �i such that e�i = −ei, is
determined by

g�i(xb, t + Δt)= − gi(xb, t)

−
1
τg
[geqi (xb, t) − gi(xb, t)] + 2ωiTw (15)

The temperature of the wall Tw is given by

Tw = Tb −
qHΔx
2κ

(16)

where Tb is the temperature at the boundary node, qH is the outward
heat flux at the boundary, and κ is the thermal conductivity of the
material.

2.3 Nucleation Model. During the SLM process, columnar
dendrites grow from the bottom of the melt pool upward, as
usually observed in experiments. Heterogeneous nucleation
usually has a much lower energy barrier than homogeneous

Table 1 Physical properties of AlSi10Mg alloy

Physical properties Value

The melting point of pure Al, Tm (K) 933 [35]
Liquidus temperature, Tl (K) 867 [41]
Solidus temperature, Ts (K) 831 [41]
Liquidus slope, ml (K/wt%) −6.6 [35]
Equilibrium partition coefficient, ke 0.104 [35]
Prefactor of interface energy stiffness,
σ*0 (J/m2)

0.169 [42]

Interfacial energy stiffness anisotropy, δ 0.27 [42]
Interface mobility, Mϕ (m4/(J · s)) 1 × 10−8 [43]
Entropy difference, ΔS (J/(m3 · K)) 1.3 × 106

Physical interface width, λ (m) 3 × 10−9 [44]
Prefactor of diffusion coefficient of
liquid phase, D0 (m

2/s)
1.34 × 10−7 [45]

Activation energy, ΔE (J/mol) 3 × 104 [45]
Kinematic viscosity, ν (m2/s) 4.87 × 10−7 [41]
Thermal diffusivity, α (m2/s) 4.5 × 10−5 [41]
Thermal conductivity, κ (W/(m ·K)) 110 [41]
Latent heat of fusion, LH (J/kg) 4.23 × 105 [41]
Specific heat capacity, cp (J/(kg · K)) 915 [41]
Density, ρ (kg/m3) 2670 [41]
Heat transfer coefficient, h (W/(m2 · K)) 82 [46]
Emissivity, ɛ 0.4 [46]
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nucleation. Therefore, it is reasonable to assume that heterogeneous
nucleation dominates and nuclei concentrate at the solid–liquid
interface. To simulate the heterogeneous nucleation process, a
Poisson seeding algorithm [32,33] is adopted. Nucleation can be
treated as fully localized events and can be modeled as a Poisson
process. The major assumption is the spatial and temporal indepen-
dence between events with the memoryless property. The nucle-
ation probability is given by

Pn = 1 − exp(−IvΔt) (17)

where I is the nucleation rate, v is the cell spacing, and Δt is a suf-
ficiently small time interval. Based on the CNT, the nucleation rate
can be calculated by

I = I0exp −
16πσ3f (�θ)

3kT(ΔGV )2

[ ]
(18)

where I0≈ 1 × 1016 m−2/s is the prefactor of the nucleation rate
determined by the jump frequency across the interface, σ is the
interface energy, f (�θ) = (2 − 3 cos �θ + cos3 �θ)/4 = 1 × 10−5 with �θ
as the contact angle, k is the Boltzmann constant, ΔGV is the
driving force in Eq. (3). The prefactor of the nucleation rate for
AlSi10Mg alloy is calibrated based on the average β grain size
observed in the SLM experiment [40], which is 5 µm. During
each time-step, the nucleation probability Pn is calculated at each
liquid cell at the boundary of the melt pool during the simulation.
At the same time, a random number with the standard uniform dis-
tribution between 0 and 1 will be generated and compared with the
nucleation probability Pn. If the random number is less than the
nucleation probability Pn, then the nucleus is planted.

3 Results and Discussion
In this section, the simulation setup and the simulation results

are described. The effects of latent heat and cooling rate on the
dendritic growth of AlSi10Mg alloy in the melt pool are
studied. The quantitative analyses of thermal history, the time
evolution of solid-phase fraction, and composition distribution
are also provided.

3.1 Computational Setup. The PF-TLBM framework is used
to simulate nucleation and dendritic growth of AlSi10Mg alloy in
the melt pool during the SLM process. In AlSi10Mg alloy, the com-
position of Si is high (9–11 wt%) and the composition of Mg is low

(0.2–0.45 wt%). Therefore, it is reasonable to assume the main
solute of AlSi10Mg alloy is Si. By using the pseudo-binary
approach, the ternary AlSi10Mg alloy is treated as a binary alloy,
and the solute is the combination of Si and Mg. The physical prop-
erties of AlSi10Mg alloy are listed in Table 1 [35,41–46]. For sim-
plification, most properties of AlSi10Mg except the diffusivity of
liquid phase are assumed to be temperature independent during soli-
dification. The dependence of physical properties on temperature
needs to be considered to further improve prediction accuracy in
future work. The algorithm is implemented in C++ programming
language and integrated with the open-source software OPENPHASE.2

PFM and lattice Boltzmann method (LBM) have been implemented
in the original OPENPHASE. The OpenMP shared-memory parallel
programming framework is used to accelerate the computation.
There are three main contributions and new features in our imple-
mentation. First, LBM has been extended as TLBM so that heat
transfer can be simulated. Second, a probabilistic nucleation
model has been introduced in the framework. Finally, a double-
mesh scheme has been implemented to improve computational effi-
ciency of the multiphysics model.
Since thermal diffusivity is three to four orders of magnitude

larger than solute diffusivity, a double-mesh scheme is adopted
in simulations to reduce computational cost. A fine grid spacing
dx= 0.2 μm is used for the PFM simulation, whereas a coarse
grid spacing Δx= 50 dx= 10 μm is used for the TLBM simulation.
Based on the stability analysis, the upper limit of the time-step
should be Δt≤min{dx2/(4Dl), Δx2/(4ν), Δx2/(4α)}. As a result,
the time-step Δt= 0.2 μs is applied in all simulation runs. The
experimental results show that the width and depth of the melt
pool in SLM of AlSi10Mg are 100 μm [40]. Therefore, the length
and width of the two-dimensional simulation domain as the cross
section of the melt pool are chosen to be Lx=Ly= 500 dx=
100 μm. The interface width is η= 5 dx, meaning that there are
six nodes on the interface or boundary layer. The initial composition
of the solute is set as C0 = 10 wt% for the whole simulation
domain. The initial temperature is T0= 867 K for the whole simula-
tion domain.
The setup of boundary conditions for simulations is schemati-

cally illustrated in Fig. 1. The rectangular region stands for the
cross section of the melt pool, which is perpendicular to the scan-
ning direction. The curve indicates the boundary of the melt pool,
where nuclei with random distributions are generated. Zero
Neumann conditions are set at all boundaries for the phase field ϕ
and composition C.

Fig. 1 Schematic diagram of the setup of boundary conditions

2http://www.openphase.de/
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In all simulations, constant cooling rates are applied in an indirect
way. It is noted that the nonisothermal solidification in the melt pool
is simulated by applying heat fluxes at boundaries rather than
cooling the whole simulation domain at a constant cooling rate.
First, four constant heat fluxes qT, qB, qL, and qR are calculated
based on a constant cooling rate. Then, these four heat fluxes qT,
qB, qL, and qR are applied at the top, bottom, left, and right bound-
aries, respectively. The relationship between a constant cooling rate
and heat fluxes at the boundaries need to be established so that the
solidification in the melt pool is nonisothermal to reflect the real
situation. Three heat fluxes qB, qL, and qR are estimated based on
their geometric relation to the heat flux q which is normal to the
boundary of the melt pool. More specifically, q is decomposed
into three heat fluxes qB, qL, and qR. It is assumed that the heat
flux q has a constant magnitude. It is necessary to determine the
relationship between heat fluxes qB, qL, and qR so that the magni-
tude of heat fluxes at boundaries can be calculated. To make it

more general, it is assumed that the shape of the melt pool is a semi-
ellipse, which is defined as

r(θ) = (a cos θ, b sin θ) (19)

where a is the major axis, b is the minor axis, and θ is an angular
parameter that defines the position. The heat flux q normal to the
boundary of the melt pool has a constant magnitude and is given by

q = qN =
q����������������������

a2 sin2 θ + b2 cos2 θ
√ (b cos θ, a sin θ) (20)

where N is the unit normal vector perpendicular to the boundary
of the melt pool. It is obvious that the heat flux q can be
decomposed to qx = q/

���������������������
a2sin2 θ + b2 cos2 θ

√
(b cos θ, 0) and

qy = q/
���������������������
a2sin2 θ + b2 cos2 θ

√
(0, a sin θ). Because the semi-ellipse

is symmetric with respect to the y-axis, let us consider the case

Fig. 2 Dendritic growth without latent heat when Ṫ = 5 × 104 K/s: (a) phase field at 2.8 ms, (b)
phase field at 5.6 ms, (c) phase field at 8.4 ms, (d ) phase field at 11.2 ms, (e) composition field
at 11.2 ms, and ( f ) temperature field at 11.2 ms
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when −2/π≤ θ≤ 0 first. By using vector calculus, the rate of heat
flow caused by the horizontal heat flux qx can be calculated by

Q̇x =
∫0
−π
2

qx ·Nds=
∫0
−π
2

qx ·N|r′(θ)|dθ=
∫0
−π
2

qb2 cos2 θ���������������������
a2sin2 θ+ b2 cos2 θ

√ dθ

(21)

Similarly, the rate of heat flow caused by the vertical heat flux qy is
given by

Q̇y =
∫0
−π
2

qy ·Nds=
∫0
−π
2

qy ·N|r′(θ)|dθ=
∫0
−π
2

qa2sin2θ���������������������
a2sin2 θ+ b2 cos2 θ

√ dθ

(22)

Both Q̇x and Q̇y can be calculated by numerical integration. On the
other hand, from the definition of rate of heat flow, we have

Q̇x

Q̇y

=
qRLy
qBLx/2

(23)

Because of the symmetry of themelt pool, the rates of heat flow at the
left and right boundaries are the same, as

qLLy = qRLy (24)

For all simulations in this work, the length and width of the simu-
lation domain are the same. Therefore, the ratio between the rates of

Fig. 3 Dendritic growth with latent heat when Ṫ = 5 × 104 K/s: (a) phase field at 4 ms, (b) phase field at
8 ms, (c) phase field at 12 ms, (d ) phase field at 16 ms, (e) composition field at 16 ms, and (f ) temper-
ature field at 16 ms
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heat flow along the x-direction and y-direction can be computed by
numerical integration of Eqs. (21) and (22) as

Q̇x

Q̇y

=
2qRLy
qBLx

=
2qR
qB

≈ 2.84 (25)

Based on Eqs. (24) and (25), a relationship can be derived as

qL = qR = 1.42qB (26)

The heat flux at the top boundary caused by the convection and
radiation heat transfer is defined as [46]

qT = h(Tl − T0) + σSBε(T
4
l − T4

0 ) (27)

where σSB is Stefan–Boltzmann constant and T0= 298 K is room
temperature. Given a constant cooling rate Ṫ , the other three heat
fluxes qB, qL, and qR can be calculated based on the energy balance
equation [47]

LxLyρcpṪ = qTLx + qBLx + qLLy + qRLy (28)

After four heat fluxes are obtained, the temperature of the wall Tw
can be updated in each iteration based on Eq. (16).

3.2 Dendritic Growth Without Latent Heat. The dendritic
growth of AlSi10Mg alloy is first simulated without the release of
latent heat for comparison. A constant cooling rate Ṫ = 5 ×
104 K/s is used. The simulation results are shown in Fig. 2. The
grain identification (ID) 0 represents the liquid phase, whereas
other grain IDs represent solid phases with different orientations.
During the rapid solidification process, the columnar dendritic
growth dominates in the melt pool, as shown in Fig. 2.
At the time of 2.8 ms, the columnar dendritic growth pattern is

observed, as shown in Fig. 2(a). The primary arms and secondary
arms still can be differentiated. As a result of the anisotropy of inter-
face energy, the primary arms grow faster than secondary arms.
Since the release of latent heat is ignored, the secondary arms
grow so fast that they quickly merge with each other as shown in
Fig. 2(b). At the time of 11.2 ms, the melt has been completely
solidified as shown in Fig. 2(d ). The composition field at 11.2 ms
is shown in Fig. 2(e), where primary arms and secondary arms
can be differentiated easily. The microsegregation occurs at the
grain boundaries and the small pockets between secondary arms.
In Fig. 2( f ), the temperature at the upper center of the melt pool
is the highest, which is caused by the setup of heat fluxes at the
boundaries. Since the primary arms aligned with the temperature
gradient grow faster than those do not, this results in the radial dis-
tribution pattern of columnar dendrites in the melt pool, as shown in
Fig. 2(d ). Since the latent heat is ignored, the temperature decreases
so fast that it approaches room temperature at 11.2 ms as shown in
Fig. 2( f ). This observation does not agree well with the experimen-
tal evidence, which also indicates the significance of considering the
release of latent heat.

3.3 Dendritic GrowthWith Latent Heat. In the second case,
the dendritic growth with the release of latent heat is simulated.
The cooling rate is also kept as Ṫ = 5 × 104 K/s. Figure 3 shows
the simulation results. At the time of 4 ms, a clear dendritic
growth pattern is shown in Fig. 3(a), where primary arms and sec-
ondary arms can be differentiated easily. When the dendrites con-
tinue to grow, the primary arms aligned with the temperature
gradient grow faster than those do not as shown in Figs. 3(b)–
3(d ). However, there is still some residual melt between grains.
The melt is not completely solidified even at the time of 16 ms,
as shown in Fig. 3(d ). The composition field at 16 ms is shown
in Fig. 3(e), where secondary arms can still be observed clearly.
The small pockets of the liquid phase at grain boundaries may
remain liquid for a long period of time until solid diffusion
takes away the remaining solute supersaturation before it is

completely solidified. The microsegregation at grain boundaries
in the case with latent heat is lower than that in the case
without latent heat. Figure 3( f ) shows the temperature field at
16 ms. The temperature in the case with latent heat is higher
than that in the case without latent heat. The maximum tempera-
ture (742.5 K) is lower than the temperature of solidus (831 K)
in equilibrium. However, the melt is not completely solidified.
This is because the actual solidus temperature during nonequilib-
rium solidification is lower than that in the equilibrium case.
This observation agrees with the CALPHAD results in the work
of Marola et al. [35]. Based on the above comparison, the inclu-
sion of latent heat is very necessary because it reveals the
details of the formation of secondary arms.
The simulated grain structure in Fig. 3(d ) qualitatively matches

the experimental observation by electron backscatter diffraction
(EBSD) [40] in Fig. 4. After one laser pass, the dendrites at the
curved boundary of the melt pool will grow and result in a
radial distribution pattern. The cross section of the AlSi10Mg
sample by SLM in the top layer is highlighted with a dashed rect-
angle. The secondary arm spacing of the simulated dendrite is λ2=
1.1 μm, which is close to the calculated value λ2= 0.6 μm based
on the analytical model developed by Bouchard and Kirkaldy
[48], as

λ2 = 12π
4σD2

l

C0(1 − k)2ρLHV2
I

[ ]1/3
(29)

The difference between the predicted and observed secondary
arm spacing could be caused by parameter uncertainty and model-
form uncertainty. The parameter uncertainty can be associated with
the interface energy σ, latent heat LH, solute diffusivity Dl, and local
velocity of the interface VI.

3.4 The Effect of Cooling Rate. In order to investigate the
effect of cooling rate on dendritic morphology and composition dis-
tribution, a higher cooling rate Ṫ = 1 × 105 K/s is used. The release

Fig. 4 Experimental EBSD result of the grain texture in the
cross section of the AlSi10Mg sample produced by SLM (cour-
tesy of Thijs et al. [40]).
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of latent heat is included in this case. The simulation results are pre-
sented in Fig. 5. It is observed that the growth velocity of dendrites
increases with the cooling rate. As a result, the secondary arms
merge with each other and disappear. The melt is almost completely
solidified at the time of 16 ms as shown in Fig. 5(d ). Because of the
competitive growth of different grains, a small grain is merged with
its neighbor grain, which is highlighted in a dashed rectangle, as
shown in Fig. 5. The final grain structure in Fig. 5(d ) is different
from those in Figs. 2(d ) and 3(d ) because the increased cooling
rate influences the competitive growth of dendrites. The rising
cooling rate also increases the microsegregation at grain boundaries,
as shown in Fig. 5(e). Figure 5( f ) shows that the temperature is
lower than that in the case with the cooling rate Ṫ = 5 × 104 K/s
in Fig. 3( f ).

3.5 Quantitative Analysis. In this section, a quantitative anal-
ysis is conducted to compare the effects of latent heat and cooling
rate on temperature field, dendritic morphology, and composition
field. Figure 6 shows the thermal histories at the location of x=
50 μm, y= 50 μm for the simulated three situations. When the
release of latent heat is not considered, the temperature decreases
linearly. When the release of latent heat is considered and the
nominal cooling rate is Ṫ = 5 × 104 K/s, the temperature drops qua-
silinearly at the beginning of solidification (0≤ t< 4 ms). Since the
fraction of phase transition is small at the beginning, the effect of
latent heat is not obvious. When t≥ 4 ms, the temperature starts
to increase until 10 ms and then decreases again. This phenomenon
is widely known as recalescence during the solidification of alloys.
When the cooling rate is increased to Ṫ = 1 × 105 K/s, the effect of

Fig. 5 Dendritic growth with latent heat when Ṫ = 1 × 105 K/s: (a) phase field at 4 ms, (b) phase field
at 8 ms, (c) phase field at 12 ms, (d ) phase field at 16 ms, (e) composition field at 16 ms, and
( f ) temperature field at 16 ms
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latent heat on the temperature field is reduced. The temperature
drops quasi-linearly at the beginning of solidification (0≤ t <
4 ms) and it is lower than that in the case of Ṫ = 5 × 104 K/s.
When t≥ 4 ms, the temperature starts to increase until 13 ms, and
then decreases again.

The histories of the solid-phase fractions for different cases are
shown in Fig. 7. Here, the solid-phase fraction means the total
fraction of solid phases in the simulation domain. When solid-
phase fraction equals to one, the melt is completely solidified.
When the latent heat is ignored, the history curve of solid-phase
fraction looks like an “S"-shaped logistic sigmoid function,
which increases slowly at the beginning, then increases rapidly
and reaches plateaus near the end. The solid-phase fraction
reaches 1.0 at the time of 11 ms, meaning that the liquid–solid-
phase transition is finished. When the latent heat is considered
and the nominal cooling rate is Ṫ = 5 × 104 K/s, the solid frac-
tion increases at the beginning, then decreases and increases
again. This means the remelting happens during rapid solidifica-
tion because of the release of latent heat. The solid-phase frac-
tion is 0.72 at the time of 16 ms. It will take some additional
time to finish the solidification process because of the release
of latent heat and microsegregation in small pockets. When
the cooling rate increases to Ṫ = 1 × 105 K/s, the speed of
phase transition increases and the solid fraction is 0.76 at the
time of 16 ms.
The composition distributions at the location of y= 50 μm at the

time of 11.2 ms without latent heat and 16 ms with latent heat are
shown in Fig. 8. It is observed that the locations where microsegre-
gation occurs are mostly the same for different cases. The microse-
gregation can be defined as

χ =
Cmax

Cmin
(30)

where Cmax is the maximum of composition, and Cmin is the
minimum of composition. When the latent heat is ignored, the
microsegregation is overestimated, which is χ= 45.44/1.27=
35.78. When the latent heat is considered and the nominal
cooling rate is Ṫ = 5 × 104 K/s, there are more secondary arms
and peaks of microsegregation. The microsegregation is χ=
29.5/1.1= 26.82. Therefore, the microsegregation without the
latent heat is overestimated by at least 33% compared with that
with the latent heat. When the cooling increases to
Ṫ = 1 × 105 K/s, the microsegregation is χ= 37.14/1.2= 30.95.
Based on the above quantitative analysis, the inclusion of latent

heat is important because it provides more realistic kinetics of den-
dritic growth and reduces overestimated microsegregation. The
increased cooling rate increases the speed of phase transition and
microsegregation.
In this study, all simulations were run using eight processors

with Intel Xeon Processor E5-2680 (2.50 GHz) and memories
of 16 GB. It took 41 h and 31 min for simulating 11.2 ms of
the case in Sec. 3.2, 48 h and 22 min for 16 ms of the case
in Sec. 3.3, and 48 h and 42 min for 16 ms of the case in
Sec. 3.4.

Fig. 6 Thermal histories at the location of x=50 μm, y=50 μm
under different conditions

Fig. 7 Histories of solid-phase fractions under different
conditions

Fig. 8 Composition distributions at the location of y=50 μm at the time of 11.2 ms
without latent heat and 16 ms with latent heat
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4 Conclusions
In this work, a nucleation model is introduced into the recently

developed PF-TLBM framework to consider the heterogeneous
nucleation process at the solid–liquid interface. This mesoscale
multiphysics model is used to simulate the nucleation and dendritic
growth of AlSi10Mg alloy in the SLM melt pool. A new method is
proposed to estimate the thermal flux for a 2D small melt pool in
order to approximate the actual nonisothermal temperature field in
SLM. The simultaneous considerations of solute transport, heat
transfer, nucleation, and dendritic growth are necessary to under-
stand complex rapid solidification in SLM. By considering the
release of latent heat, the model is able to predict the temperature
field, composition distribution, and dendritic morphology with
more details than models without latent heat. The recalescence
occurs when the latent heat is considered. The qualitative and quan-
titative analyses show that the inclusion of latent heat is necessary
because it reveals the details of the formation of secondary arms,
reduces the overestimation of microsegregation, and provides
more realistic kinetics of dendritic growth. A higher cooling rate
results in faster liquid–solid-phase transition and higher microsegre-
gation at grain boundaries.
Further work is needed to improve the fidelity, accuracy, and effi-

ciency of the PF-TLBM model. For instance, the surface tension
source term could be introduced into the TLBM so that the effect
of Marangoni flow on dendritic growth can be investigated. The
motion of grains can be enabled as well. Furthermore, the empirical
nucleation parameters need to be determined and calibrated based
on experimental measurements, first-principles calculations, or
atomistic simulations. The determination of the nucleation energy
barrier or nucleation rate can help to predict a more realistic micro-
structure. The dependence of physical properties of AlSi10Mg alloy
on temperature needs to be considered to improve prediction accu-
racy, which can be found in the work of Pei et al. [46]. The model-
form and parameter uncertainties associated with the developed
model should be quantified to provide more confidence in the pre-
diction. A parallelized 3D PF-TLBM is needed to simulate the den-
dritic growth in the melt pool with more details. Both the PFM and
the TLBM can be modified for parallel computation without much
difficulty.
The proposed mesoscale multiphysics PF-TLBM model is a

key component in a multiscale simulation framework for SLM
processes, which involves multiple and complex physical phenom-
ena. It predicts the microstructure evolution in the SLM process
at a reasonable time scale. The predicted microstructure is the
central hinge of the P-S-P relationship, which needs to be investi-
gated for process design and optimization. Classical continuum
simulation methods cannot provide fine-grained material phase
and composition distribution, whereas atomistic models cannot
simulate the time scales which are long enough for manufacturing
processes.
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