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Abstract
Phase field method (PFM) is a simulation tool to predict microstructural evolution
during solidification and is helpful to establish the process-structure relationship
for alloys. The robustness of the relationship however is affected by model-form
and parameter uncertainties in PFM. In this paper, the uncertainty associated with
the thermodynamic and process parameters of PFM is studied and quantified.
Surrogate modeling is used to interpolate four quantities of interests (QoIs),
including dendritic perimeter, area, primary arm length, and solute segregation, as
functions of thermodynamic and process parameters. A sparse grid approach is
applied to mitigate the curse-of-dimensionality computational burden in uncer-
tainty quantification. Polynomial chaos expansion is employed to obtain the
probability density functions of the QoIs. The effect of parameter uncertainty on
the Al–Cu dendritic growth during solidification simulation are investigated. The
results show that the dendritic morphology varies significantly with respect to the
interface mobility and the initial temperature.

Keywords: uncertainty quantification, phase field method, solidification,
sparse grid, polynomial chaos expansion

(Some figures may appear in colour only in the online journal)

1. Introduction

Phase field method (PFM) is a widely used simulation tool for studying the evolution of
microstructures during solidification. The microstructure evolution, or more specifically the
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dendritic growth along time, is modeled, and the characteristics of microstructures can be
predicted. Thus the process-structure relationship for solidification can be established via
simulation. Uncertainty quantification (UQ) however plays a critical role in using the pre-
dicted structure-property relationship for process design, given the model-form and parameter
uncertainties in PFM. Model-form uncertainty is due to simplification, approximation, and
subjectivity during the modeling process, whereas parameter uncertainty is the result of model
calibration.

There are various sources of model-form uncertainty in PFM. Simplifications are the
major ones. First, solidification is a complex physical process which requires a multi-
physics approach to model the dynamics of thermal distributions, velocity and pressure of
fluid flows, latent heat of phase transition, and thermoelectric current, which all affect the
nucleation and growth of grains [1]. PFM itself however only provides a simplified view of
the physics with various assumptions. Uncertainty thus arises from the separation of phy-
sics. Second, in a complete solidification model, multi-scale phenomena need to be con-
sidered, including atomic clustering and crystallization in nucleation, as well as liquid–solid
interface mobility at the atomistic scale. Existing PFM models focus on mesoscale and use
thermodynamics nucleation models in combination with empirical methods. Similarly, the
interface mobility is usually simplified to be constant and temperature-independent with
empirical values. The dentritic growth and morphology in solidification can be fairly
unstable and caused by many factors such as impurities as nucleation seeds, locally trapped
supercooled liquid, surface tension, interfacial anisotropy, interface mobility, and others.
The separation of scales introduces model-form uncertainty. Model-form uncertainty also
comes from approximations. First, truncations are always applied in the formulation of
partial differential equations for complex physics during mathematical modeling, which
keep equations at low integer orders. Truncations are also applied in functional and reci-
procal spaces during the computational modeling process. Second, numerical treatment in
solving the equations introduces additional approximation and discretization errors which
lead to numerical instability, such as von Neumann instability in the explicit time-inte-
gration scheme. Particularly for PFM, the diffuse interface thickness in the simulation
model is typically two orders of magnitude higher than the physical interface thickness,
which also introduces numerical errors, although anti-trapping current is usually introduced
to eliminate the numerical solute trapping. In addition, model-form uncertainty in PFM can
be the bias introduced with subjective choices of free energy functions with different forms
of multi-well and multi-obstacle for different phases.

Parameter uncertainty of PFM is introduced during the model calibration process. First,
PFM often relies on computational thermodynamics methods (e.g. CALPHAD), molecular
dynamics, and first-principles calculations for phase equilibrium thermodynamic parameters.
The model-form and parameter uncertainties from these models propagate and become the
parameter uncertainty of the PFM model. Second, for empirical methods where model
parameters are adjusted so that predictions match experimental observations, uncertainty
originated from the systematic and random errors in experimental measurements propagates
to the PFM model as the parameter uncertainty.

Given the various sources of uncertainty in PFM, the accuracy and robustness of pre-
dictions on dendritic growth and microstructures are the major challenges in the investigation
of process-structure-property linkages based on simulations. When the linkages are applied to
process design and optimization, uncertainties need to be taken into account for robustness. In
this study, we focus on the parameter uncertainty in PFM, particularly the effects of process
parameters and thermodynamic parameters associated with materials. Surrogate based UQ
methods including sparse grid and polynomial chaos expansion are applied here. Note that
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model-form uncertainty is mainly epistemic, whereas parameter uncertainty is a combination
of epistemic and aleatory ones. The study of model-form uncertainty can be based on
probabilistic and non-probabilistic UQ methods.

UQ for materials modeling has attracted research attentions in recent years [2–4]. Par-
ticularly at atomistic scale, the major sources of model-form and parameter uncertainty in
first-principles density functional theory (DFT) include the exchange-correlation functionals,
pseudopotentials and nonzero temperature approximations, as well as calibration errors [5, 6].
UQ methods such as Bayesian error estimation [7], sensitivity analysis (SA) [8], and Gaussian
process [9, 10] have been applied to quantify the uncertainty associated with energy calc-
ulation in DFT. The major sources of uncertainty in molecular dynamics are inaccurate inter-
atomic potentials and the bias introduced in simulated small sizes and short time scales. UQ
methods such as polynomial chaos expansion [11, 12], statistical regression [13], Bayesian
calibration [14–18], interval bound analysis [19, 20], and local SA and perturbation [21, 22]
have been applied to quantify simulation errors. The uncertainty in kinetic Monte Carlo
simulation is mainly due to event independence assumption, incomplete knowledge of event
catalog, and imprecise kinetic rates. Random set sampling approach [23] was applied to
quantify the prediction errors. In addition, some UQ issues which are unique in materials
modeling, such as cross-scale model validation [24] and cross-scale calibration [25] with
model-form discrepancy, still require further studies. Note that the model-form and parameter
uncertainties of the above atomistic models can propagate to mesoscale PFM models as
parameter uncertainty when the atomistic models are used to estimate and calibrate the PFM
parameters.

In PFM simulation, the instability of morphology prediction is caused by both model-
form and parameter uncertainties. To mitigate the effect of model-form uncertainty due to
missing physics and information, stochastic [26, 27] and fractional order differential
equations [28, 29] can be introduced. Empirical model adjustment such as anti-trapping
current term [30] can be added. In this paper, we focus on the effect of parameter uncertainty.
The uncertainty effects of process and thermodynamic parameters on the microstructures of
Al-4wt%Cu binary alloy during solidification simulation are studied. The microstructures are
quantified by four quantities of interest (QoIs) including dendritic area, dendritic perimeter,
the segregation of Cu at solid–liquid interface, and the length of primary arm of dendrite. An
image processing pipeline is utilized to automatically quantify the variations of the four
aforementioned QoIs. The sparse grid (SG) method is used to interpolate these QoIs in high-
dimensional input space and to reduce the computational burden of performing a large
number of PFM simulations. The representative dendritic morphology corresponding to the
SG nodes clearly demonstrates the impact of the input parameters on the dendritic growth.
The dendritic morphology varies significantly with respect to the interface mobility Mf,
which is a thermodynamic parameter, and the initial temperature T0, which is a process
parameter. The polynomial chaos expansion (PCE) framework is employed to quantify the
uncertainty associated with the QoIs, where the process parameters are assumed to be
deterministic and controllable, whereas the thermodynamic parameters are assumed to be
random. The UQ study provides insights of the robustness in the process-structure relation-
ship for Al-4wt%Cu binary alloys.

In the remainder of the paper, section 3 introduces the formulation of SG for high-
dimensional interpolation, and briefly discusses the formulation of PCE framework in a UQ
problem. Section 4 describes the details about the PFM to study the dendritic evolution, as
well as the automatic post-processing pipeline, in which four physical QoIs are extracted and
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studied as functions of process and thermodynamic parameters. Section 5 analyzes the UQ
results for two separate cases. In the first case (section 5.1), the QoIs are represented as high-
dimensional interpolation quantities and the one-at-a-time variations of the QoIs with respect
to input parameters are investigated. In the second case (section 5.2), the thermodynamic
parameters are treated as random inputs, and the probability density functions (PDFs) of the
QoIs at different values of process parameters are generated. In section 6, the results are
discussed. Section 7 concludes the paper.

2. Background

2.1. Instability nature of dendritic growth and numerical stability of phase field formulation

Model-form and parameter uncertainties in PFM can lead to perturbation and inaccuracy of
dendritic morphology predictions. Dendritic growth is by nature an unstable phenomenon.
During the cooling process, it is possible for a material to remain in its (thermodynamically
metastable) liquid state even below the melting temperature. The solidification process can
occur homogeneously after sufficient cooling, or heterogeneously by a nucleated seed
within the supercooled liquid [31]. The later one induces an unstable dendritic growth. The
solidification can be divided into either a stable or unstable process. In a stable solidification
process or Stefan problem, the kinetic mobility and surface tension are ignored, resulting in
a reduced perturbation on the interface. When the heat is conducted away from the solid–
liquid interface and the surface tension and kinetic mobility cannot be neglected, the
solidification becomes unstable. When the undercooling is large enough, the dendritic
growth becomes dominant. During unstable dendritic growth, any statistic fluctuations can
be amplified, which reflects in the formation of secondary arms. Jaafar et al [31] provides a
comprehensive review on dendritic growth instability, including Mullins–Sekerka [32] and
interfacial instabilities, as well as the history and evolution of Gibbs–Thomson condition.
The interfacial anisotropy, due to the presence of the crystal lattice in solid phase, also plays
an important role in the dendritic side-branching. Glicksman [33] noted the promotion of
dendritic side-branching is rooted from applying the anisotropic of Gibbs–Thomson con-
dition to an interface with both strong shape anisotropy and crystal’s energy anisotropy,
resulting in a pulsatile tip motion.

To simulate solidification, methods of front tracking, enthalpy, lever set, cellular auto-
maton, and phase field have been developed. PFM is the most used one and regarded as the
most accurate method, even though it is computationally more expensive than the other.
Nevertheless, model errors in PFM can cause instability of simulated dendritic growth,
exhibited as the interfacial, capillary, and chemical instabilities. Model-form errors are from
the derivation of the partial differential equations, and numerical treatment in solving them.
Some research efforts have been done to improve the numerical stability. Karma [34] pro-
posed a PFM formulation that uses a thin-interface and added an anti-trapping current term to
model the temperature jump across the interface and correct the heat conservation and the
surface diffusion at the interface for binary dilute alloys. Kim [35] extended the method of
Karma [34] by generalizing the anti-trapping term for arbitrary multi-component alloys.
Tianden et al [36] and Eiken et al [37] proposed a thermodynamically consistent PFM for
multiphase and multi-component systems.
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2.2. Sensitivity study of uncertainty on phase-field simulation of dendritic growth

To model the interface stability because of model-form uncertainty, some approaches to
enhance the PFM models have been proposed. One of the perturbation theories of interface
stability is called Mullins–Sekerka instability [32, 38, 39], which determines if a small-
amplitude perturbation will be enhanced in time and destabilize the interface, or decay and
leave the initial interface unchanged and morphologically stable. The time dependent mar-
ginal stability theory developed by Langer and Muller-Krumbhaar [40–42] can be used as a
criterion for selection of the operating state of the dendrite tip, which is related to the dendrite
tip radius and velocity.

SA has been applied in PFM to understand the effect of input parameters on simulation
results. Xing et al [43] investigated the columnar dendritic growth competition with respect to
the orientation in Al-4wt%Cu alloy. Takaki et al [44] proposed a coupled phase field-lattice
Boltzmann model to study the effect of solute expansion factor on dendritic morphology, tip
velocity, and concentration of the Al-4wt%Cu for dendritic growth with natural convection.
Qi et al [45] studied the effects of different natural convection schemes and solid motion on
the dendritic tip growth velocity of the Al-4wt%Cu alloy using PFM and computational fluid
dynamics and concluded that when the dendrite is mobile, the tip growth velocity is sensitive
to the natural convection schemes. Liu and Wang [1, 46] proposed a framework called phase
field and thermal lattice Boltzmann method to investigate the effects of cooling rate and latent
heat on the dendritic morphology, concentration, and temperature fields of Al-4wt%Cu alloy.
Boukellal et al [47] conducted a SA of the solute composition and the average distance
between two nuclei on the dendritic growth of Al–Cu binary alloy using PFM, and proposed a
scaling laws for the tip velocity. Fezi and Krane [48] developed a simple 1D solidification
model and conducted a uncertainty analysis using Smolyak sparse grid on the positions of the
liquidus, the solidus, and the solidification time of alloy 625, with seven input parameters.
Fezi and Krane [49] conducted a SA on the solidification of Al-4.5wt%Cu alloy, with respect
to different secondary dendritic arm spacing, equiaxed particle size, and solids fraction in
mushy zone, where the QoIs are the macrosegregation number, the Weibull deviation of
positive segregation, and the volume fraction of the ingot. Fezi and Krane [50, 51] investi-
gated the effects of microstructural model parameters, thermal boundary conditions, and
material properties on the macrosegregation levels and solidification time, and concluded that
the macrosegregation are sensitive to the dendrite arm spacing in the mushy zone. Plotkowski
and Krane [52] analyzed three two-dimensional Al-4.5wt%Cu solidification models with
seven and nine input parameters that account for both model-form and parameter uncer-
tainties. However, in existing work, the combined effects of uncertainties associated with
thermodynamic and process parameters upon the dendritic morphology using PFM has not
been studied. More importantly, the uncertainty in the process-structure relationship for
dendritic growth has not been quantified systematically.

3. Stochastic collocation for UQ

In this section, we briefly summarize the stochastic collocation technique, which is employed
to solve the UQ problem. In this approach, the SG and PCE methods are combined to
efficiently quantify the uncertainty of the QoIs.
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3.1. Sparse grid method for high-dimensional interpolation

To mitigate the curse of dimensionality, the SG technique is employed to interpolate the QoIs
in the high-dimensional domain. We follow the formulation in [53, 54], and use global
Lagrange polynomials as basis functions. To be accurate, the interpolating function often
needs to be smooth, which is a reasonable assumption for the simulation considered herein.
The accuracy of SG method has been studied extensively by Bungartz et al [55] and Nobile
et al [56].

Let f be the function, i.e. QoI, to be interpolate. Assume f is defined on the domain
D 1, 1 d= -[ ] . Given ensembles f xj j

m
1={ ( )} , the interpolation approach finds an approx-

imation f( ) of f that fulfills the condition f x f x j m, 1, ,j j = " = ¼( )( ) ( ) . More specifi-
cally, we seek

f x f x L x , 1
j

m

j j
1

 å=
=

( )( ) ( ) ( ) ( )

where Lj(x) are the Lagrange polynomials
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whose explicit formulae are known. Interpolation in one dimension (d= 1) is well-studied. To
extend the method to multiple dimensions (d>1), we need to employ certain tensor product
rule. The full tensor product formula is perhaps the most straightforward, as
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Here, fmi ( ) is one-dimensional Lagrange interpolation in the ith dimension with m=mi, so
the rule just employs univariate interpolations and then fills up D dimension by dimension.
Albeit simple, a major drawback of full tensor product is that the total number of points grows
very fast in high dimensions.

An alternative and more efficient approach is Smolyak sparse grids interpolation, based
on the work by Smolyak in [57]. Instead of taking the full tensor product in equation (2), the
Smolyak interpolation takes a subset of the full tensor construction described as
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see [58], where q d is an integer denoting the level of the construction. To compute the
operator q d,( ), one needs to evaluate f on the set of points

q d, , 4
iq d q

i i

1

d1  
 

= ´ ´
- +

( ) ⋃ ( ) ( )
∣ ∣

where x x, , 1, 1i i
m
i

1 i
 = ¼ Ì -{ } [ ] is the collection of nodes used by the univariate

interpolating operator i . This set is a much smaller subset of those required by the full tensor
product rule.

In this paper, we opt to use Clenshaw–Curtis points [59], which are the roots of Che-
byshev polynomials and specified as
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where x 0i
1 = if mi=1, and m 2 1i

i 1= +- for i>1. This rule is very popular in high-
dimensional interpolation, due to its stability as well as nested property, i.e. the lower-level
grids are subsets of the higher-level grids. Figures 1(a) and (b) show two examples of two-
dimensional (2D) and 3D SG, respectively, where the Clenshaw–Curtis nodes are used to
construct the SG. To see the reduction in function ensembles by using SG, we compare the
number of nodes required by SG and full tensor grid in table 1. It is possible to construct the
interpolation of QoIs with other choices of quadrature rules (e.g. Gauss rules, greedy rules) as
well as basis functions (e.g. piecewise polynomials, wavelets). We do not attempt to optimize
such choices in this paper and will investigate this in a future study.

3.2. Non-intrusive spectral projection for uncertainty propagation

We rely on spectral representation of uncertainty using the PCE framework and the non-
intrusive spectral projection method to compute the PDFs of QoIs. PCE [60, 61] is one of the
most widely used UQ methods to propagate uncertainty in physical models and computa-
tional simulations. Let θ be the random event in a sample space Ω with probability measure P,
and f (θ) be a second order stochastic process. PCE is a means of representing f parametrically
through a set of random variables d,i i

d
1 z q Î={ ( )} :

Figure 1. Example of SG in 2D (a) and 3D (b) for high dimensional interpolation.

Table 1. The number of nodes used by SG and full tensor grid.

Level
d=3 d=5 d=7

SG full grid SG full grid SG full grid

0 1 1 1 1 1 1
1 7 27 11 243 15 2187
2 25 125 61 3125 113 78 125
3 69 729 241 59 049 589 4 782 969
4 177 4913 801 1 419 857 2465 410 338 673
5 441 35 937 2433 39 135 393 9017 4.26× 1010

6 1073 274 625 6993 1 160 290 625 30 241 4.90× 1012

7 2561 2 146 689 19 313 3.57× 1010 95 441 5.94× 1014

8 6017 16 974 593 51 713 1.12× 1012 287 745 7.40× 1016
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p is the order of PCE, and d is the dimensionality of the problem, resulting in an
approximation for finite PCE, as
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The PCE coefficients fj
 is determined by projection of (7) onto the polynomial basis jF{ } as
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To compute the PCE coefficients, we apply a non-intrusive spectral projection approach
[62–64] to evaluate the deterministic high-dimensional integrals in the numerators and
denominators of (8). In short, we compute the value of basis functions at the Clenshaw–Curtis
nodes to obtain the PDFs using Legendre-Uniform quadratures and interpolate the QoIs
through the interpolation process.

4. Phase-field model for dendritic growth simulation

In this paper, we adopted the PFM developed from Steinbach et al [36, 37, 65], which have
been validated against experimental observations [65], where the anti-trapping current term is
added to ensure equal chemical potential between liquid and solid phases.

The essential component of PFM is a free energy functional that describes the kinetics of
phase transition. The free energy functional

F f f Vd 9GB CHò= +
W

( ) ( )

is defined with an interfacial free energy density f GB and a chemical free energy density f CH

in a domain Ω.
A continuous variable named phased field f 0 1 f( ) indicates the fraction of solid

phase in the simulation domain during the solidification process, and the fraction of liquid
phase is fl=1−f. The interfacial free energy density is defined as

n
f

4
1 , 10GB 2

2

2

*s
h

f
p
h

f f=  + -
⎧⎨⎩

⎞
⎠⎟

⎫⎬⎭
( ) ∣ ( ( )

where n*s ( ) is the anisotropic interfacial energy stiffness, η is the interfacial width, n = f
f
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is the local normal direction of the interface. The anisotropic interfacial energy stiffness is
defined as

n n1 3 4 , 11x y

2

2 0
4 4* * * *s s

s
q

s e e= +
¶
¶
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where σ is the interfacial energy, atan
n

n
y

x
q = ( ) indicates the orientation, 0*s is the prefactor of

interfacial energy stiffness, and ε* is the anisotropy strength of interfacial energy stiffness,
which models the difference between the primary and secondary growth directions of
dendrites.

The chemical free energy is the combination of bulk free energies of individual phases as

f h f C h f C C C C1 , 12s s l l s s l l
CH f f m f f= + - + - +( ) ( ) ( ) [ ( )] ( )

where Cs and Cl are the compositions of solutions as weight percent (wt%) in solid and liquid
phases respectively, which is the amount of solute dissolved in a specific amount of solution.
C is the overall composition of a solution in the simulation domain. fs(Cs) and fl(Cl) are
the chemical bulk free energy densities of solid and liquid phases respectively. μ is the
generalized chemical potential of solute introduced as a Lagrange multiplier to conserve the
solute mass balance C=fs Cs+fl Cl. The weight function

h
1

4
2 1 1

1

2
asin 2 1 13f f f f f= - - + -⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
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⎤
⎦⎥( ) ) ( ) ( ( )

provides the coefficients associated with solid and liquid bulk energies.
The evolution of the phase field is described by

nM G
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where Mf is the coefficient of interface mobility, and the driving force is given by

G S T T m C , 15m l lD = D - +( ) ( )
where S 1 10 J K6 1D = - ´ - is the entropy difference between the solid and liquid phase, Tm
is the melting temperature of a pure substance, T is the temperature field, and ml is slope of
liquidus. For simplification, the interface mobility is assumed to be constant in this work.

The evolution of composition variable is modeled by

jC D C1 , 16l l atf=  -  + ˙ · [ ( ) ] · ( )

where k C

C
s

l
= is the local partition coefficient and Dl is the diffusion coefficient of liquid.

Furthermore, jat is the anti-trapping current and defined as

j C C1 17l sat
h
p

f f f
f
f

= - -



( ) ( ) ˙
∣ ∣

( )

which is to eliminate the unphysical solute trapping during the interface diffusion process by
removing the anomalous chemical potential jump [35, 66] so that simulations can be done
more efficiently with the simulated interface width larger than the physical one. The PFM are
solved mainly based on equations (14) and (16).

The open-source PFM toolkit OpenPhase [67] is used to simulate the 2D dendritic
growth of binary alloy Al-4wt%Cu. Table 1 shows the physical properties of Al-4wt%Cu
alloy. In all simulation runs, the grid spacing is Δx=0.5 μm, the time step is
Δt=2·10−5 s, and the simulation period is 0.12 s. The length and width of the simulated
domain are Lx=150 μm and Ly=150 μm in x- ( 1, 0, 0⟨ ⟩) and y-directions ( 0, 1, 0⟨ ⟩),
respectively. In general, the interface width should be at least 3Δx to guarantee the conv-
ergence of simulation. Therefore, the interface width is η=5Δx=2.5 μm. The initial dia-
meter D should be larger than the interface width and D=5 μm is determined in this work.
The initial position of the seed is at the center of the simulation box. The initial concentration
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of Cu is C0=4wt% for the liquid melt. For phase field f and concentration C, zero Neumann
conditions are set at all boundaries.

Table 2 lists the physical parameters of the Al-4wt%Cu alloy concerned in the study. The
dendritic growth of Al-4wt%Cu is investigated through a parametric study of PFM, where the
input parameters are varied, and the QoIs are investigated using an automatic post-processing
pipeline. Table 3 lists the ranges of input parameters and their physical meanings in the PFM
study.

The ranges of input parameters are determined based on the values used in other
simulation and experimental studies [68] of solidification. Because the number of samples is
limited in the literature, the parameters used in this work are assumed to be uniformly
distributed based on the principle of maximum entropy.

4.1. Simulation procedure

Figures 2(a) and (b) show an example of dendritic growth at different snapshots in the 2D
PFM simulations. The primary and secondary dendritic arms are observed. The input para-
meters listed in table 3 have direct impact on the geometry and shape of the dendritic growth.
An automatic post-processing pipeline is devised to extract the QoIs that describe the
dendrite.

A level-seven SG for five-dimensional space is constructed based on Clenshaw–Curtis
rule [59], where the nested Chebyshev nodes are chosen. Tasmanian package [69–72] is used
to construct and evaluate for high-dimensional interpolation. The construction of SG results in
19 313 nodes, which correspond to different sets of inputs for the PFM. As shown in table 1,
the use of level-seven full tensor grid would require 3.57×1010 nodes for comparable
results. At each node, a PFM simulation is performed, and the QoIs are collected once the

Table 2. The physical properties of Al-4wt%Cu alloy.

Symbol Physical meaning Value Unit

Tm Melting point of pure Al 933.6 K
ρ Density of liquid 2700 kg m−3

ml Slope of liquidus −2.6 K/wt%
k Partition coefficient 0.14
Dl Diffusivity of liquid 3.0 10 9´ - m2 s−1

0*s Prefactor of interfacial energy stiffness 0.24 J m−2

ε* Interfacial energy stiffness anisotropy 0.35
Mf Interface mobility 4 10 9´ - m4 J–1 s–1

Table 3. Input parameters and their respective ranges.

Symbol Physical meaning Lower bound Upper bound Unit

T

t

¶
¶

Cooling rate −20 −10 K s−1

T0 Initial temperature 915 920 K

0*s Prefactor of interfacial
energy stiffness

0.22 0.26 J m−2

*e Interface anisotropy 0.30 0.40
Mf Interface mobility 3 10 9´ - 5 10 9´ - m4 J–1 s–1
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simulation is finished. The process is automated using Bash/Shell and Python scripts. The
mappings from the process parameter space to the microstructural descriptor space are known
to be smooth, as no singularity is expected for the PFM, and the dendrite is expected to evolve
continuously as time advances.

In this work, four QoIs are considered: (1) the perimeter of dendrite Ld, (2) the area of
dendrite Sd, (3) the segregation of Cu at solid–liquid interface κ, and (4) the length of primary
arm of dendrite Pd. Since the microstructure determines the final properties of products, it is
important to quantify the morphology of the microstructure. Three QoIs including dendritic
perimeter, dendritic area and primary arm length are good metrics to quantify the morphology
of the microstructure. The segregation of Cu is used to quantify the microsegregation at the
interface.

Dendrite growth are strongly related to the grain growth, as both are competitive in
nature [73]. Bostanabad et al [74], Liu et al [75], Li [76], and Bargmann et al [77] provided a
comprehensive review for computational microstructure reconstruction, generation, and
characterization techniques, with statistical and deterministic physics-based microstructure
descriptors. Dendritic morphology is highly correlated to the final grain microstructure, e.g.
grain area and grain aspect ratio. Thus, in the scope of this paper, three dendritic QoIs related
to the grain size, namely the dendritic perimeter, the dendritic area, and the primary arm
length, are considered.

4.2. Dendritic perimeter

The perimeter of the dendrite, denoted as Ld, is the first QoI. To compute the perimeter of the
dendrite, the phase field composition is extracted after a number of time steps. Figures 3(a)
and (b) present the contours of the dendrite in Al-4wt%Cu binary alloy at different snapshots.
The contours are highlighted around the solid dendrite. A threshold is imposed based on the
phase field composition to convert the simulation outputs to gray scale images. Then, the
contours are retrieved from the binary images using Suzuki algorithm [78]. The contour
extraction is implemented based on the OpenCV toolkit [79].

Figure 2. Dendritic growth of binary alloy Al-4wt%Cu at different snapshots.
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4.3. Dendritic area

The area of the dendrite, denoted as Sd, is the second QoI in this study. The computation of
dendritic area is performed in a similar approach as the dendritic perimeter, in which a phase
field contour is extracted based on the phase field composition function, as in figure 3. After a
non-self-intersecting contour of dendrite is extracted, the dendritic area is computed as the
contour area through Green formula. The computation of dendritic area occurs after a fixed
number of time steps, based on the frequency of phase field composition outputs of the PFM,
and is implemented using the OpenCV toolkit similarly.

4.4. Cu segregation

In literature, the segregation coefficient is typically defined as the ratio between composition of
solid and that of liquid. This definition holds for single-component materials systems. However,
for multi-component materials systems. The definition of segregation coefficient must be defined
based on one component. In this case, we define the segregation coefficient based on Cu.

The segregation of Cu at solid–liquid interface, denoted as κ, is used as the third QoI, and
calculated as

C

C
, 18l

i

s
i

k = ( )

where Cl
i and Cs

i are the compositions of liquid and solid phase at the interface, respectively.
The deviation of the segregation coefficient κ from one determines the amount of actual
segregation. Notice that the segregation of Cu at the interface κ is different from the partition
coefficient k. The computation of Cu segregation quantity occurs after a fixed number of time
steps, based on the phase field composition outputs of the PFM. It has been shown that high Cu
segregation indicator κ promotes the Al2Cu θ intermetallic phase [80] on the grain boundary or
inside the grain. The Al2Cu θ phase is associated with a higher mechanical strength of the
material. Thus, κ serves as an implicit link between structure and property relationship.

Figure 3. Perimeter and area computation of the dendrite in figure 2 via finding contour
with image processing. Readers are referred to the online manuscript for color version.
Green lines indicate the contours, whereas black region corresponds the Cu-rich region,
and white region corresponds to the Al-rich region.
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4.5. Dendritic primary arm length

The dendritic primary arm length, denoted as Pd, is the fourth QoI. Based on the extracted
spatial phase field composition from the PFM simulation, the dendritic primary arm length is
computed based on the locations of the pixels where Cu-rich phase switches to Al-rich phase
along 1, 0, 0⟨ ⟩ and 0, 1, 0⟨ ⟩ crystallographic directions.

4.6. Mesh convergence study

In order to assess the sensitivity and numerical stability of the implemented PFM, a mesh
convergence study is conducted to ensure that the QoIs do not drastically change with respect
to the spatio-temporal discretization scheme. Figure 4(a) presents four QoIs along time steps,
where independent runs with different time steps have been performed and post-processed. It
is seen that the chosen time step of 2.0 10 s5´ - is stable for all four QoIs. Figures 4(b)–(f)
presents a qualitative analysis of dendrites using different mesh sizes, 300×300, 400×400,
600×600, and 750×750, also showing a numerical stability of QoIs at the chosen mesh
size of 300×300. von Neumann stability is taken into account to reduce the time step
accordingly, corresponding to the increase in the mesh size.

5. Numerical results

In section 5.1, the QoIs are regarded as functions of process parameters at some fixed values
of thermodynamic parameters, and vice versa. The SG method is employed to expand the
QoIs through high-dimensional interpolation of the input parameters.

Figure 4. Mesh-time step convergence study.
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In section 5.2, the PDFs of the QoIs are estimated based on the assumption that the ther-
modynamic parameters ,0* *s e( and Mphi) are uniformly distributed between the lower and upper
bounds in table 2. The process parameters, on the other hand, are assumed to be fixed and known.
The PDFs of the QoIs for different fixed values of process parameters are computed numerically.

5.1. QoIs as functions of process and thermodynamic parameters

Figure 5 shows dendritic morphology variations on SG nodes, as functions of process
parameters. Both high cooling rate and low initial temperature promote the overall dendritic
growth and the growth of the secondary dendritic arms This is because that higher cooling
rate and lower initial temperature result in higher driving force, which promotes the dendritic

Figure 5. Representative dendritic morphology on SG as process parameters vary, i.e.
cooling rate and initial temperature. The thermodynamic parameters are fixed at

M0.35, 0.24, 4 100
9e s= = = ´f

* * - , respectively.
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growth. Meanwhile, faster dendritic growth causes a higher segregation of Cu at the solid–
liquid interface because there is less time for the solute Cu at the interface to diffuse. The
initial temperature seems to have a larger impact on the secondary arm length than the cooling
rate. At T0=915 K, the secondary arms grow more densely, compared to those at
T0=920 K. To be representative, the dendrite at each node is fixed at a nominal thermo-
dynamic parameter value.

Figure 6 shows the contour map of four different QoIs as functions of process para-
meters. The corresponding dendritic morphology on SG is shown in figure 5. The dendritic
morphology changes dramatically with respect to the initial temperature. A lower initial
temperature causes a higher undercooling and driving force, which encourages the dendritic
growth. The low initial temperature promotes the dendritic growth in all aspects, particularly
the dendrite secondary arm growth. The secondary arm counts, as well as the dendritic area
and perimeter are monotonic in the chosen bound of the initial temperature [915, 920]K. The
cooling rate also has an effect on the dendritic growth. However, qualitatively, the dendritic

Figure 6. Dendrite QoIs as functions of process parameters. Other thermodynamic
parameters are fixed at M0.35, 0.24, 4 100

9* *e s= = =f
-· , respectively.
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morphology does not change significantly with respect to the cooling rate in the chosen bound
[−20, −10] K s–1, as shown in figure 5. Quantitatively, higher cooling rate promotes dendritic
growth, as manifested by the dendritic area and dendritic perimeter, as shown in figure 6.
However, the initial temperature appears to play a major role in promoting dendritic growth,
as well as morphing the dendrite. Dendrites with more secondary arms have larger areas and
perimeters.

Cu segregation κ is a monotonic function of process parameters, including cooling rate
T

t

¶
¶

and the initial temperature T0, in the range of study, as shown in figure 6(c). Particularly,
the Cu segregation κ increases with respect to a faster cooling rate and lower initial temp-
erature. The initial temperature T0 has a dominant effect on the Cu segregation κ in the range
used. The primary arm length Pd, as shown in figure 6(d), is a highly nonlinear function of the
process parameters, but appears to be correlated with the initial temperature T0 as well. Lower
initial temperature T0 tends to be weakly associated with higher primary dendritic arm length
Pd.

Figure 7. Dendritic morphology at different thermodynamic parameters on SG, where
other parameters are fixed at 15T

t
= -¶

¶
K s–1, T0=917.5, and σ*0=0.24.
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Figure 7 shows the dendritic morphology variation with respect to the thermodynamic
parameters, i.e. interface anisotropy ε* and interface mobility Mf. Because interface aniso-
tropy ε* models the difference between the primary and secondary growth directions of
dendrites, it has a larger effect on the shape of dendrite than the dendritic growth speed.
Therefore, interface anisotropy ε* does not affect the dendritic growth speed much. Since the
interface mobility Mf is the constant ratio between dendritic growth velocity and driving
force, a higher interface mobility results in faster dendritic growth. The dendritic morphology
varies significantly with respect to the interface mobility Mf. Higher interface mobility Mf

promotes the growth of dendrite secondary arms, and consequently, the dendritic area and the
dendritic perimeter. It is noted that there is a small difference between figures 7 and 5 at the
center of the dendrites. Particularly, the center of the dendrites in figure 5 is more developed
than the center of the dendrites in figure 7. The center of the dendrites has an impact on the

Figure 8. Dendrite QoIs as functions of thermodynamic parameters. Other process
parameters are fixed at 15T

t
= -¶

¶
K s–1, T0=917.5, and 0.240*s = .
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dendritic area and dendritic perimeter. If the center of the dendrites is well-developed, with
substantial secondary arm growth, then the dendritic perimeter and dendritic area increase. If
the center of the dendrites is under-developed, then the dendritic area and dendritic perimeter
decrease.

It is observed that the dendritic area Sd and the dendritic perimeter Pd significantly
increase when the interface mobility Mf increases. This is because a higher interface mobility
results in a higher growth speed of dendrite. When the initial temperature is low (915 K), the
dendritic area and perimeter are positively correlated with the interfacial energy stiffness.
When the initial temperature is high (920 K), which means the undercooling is low, the
change of interfacial energy stiffness has a trivial effect on the dendritic area and perimeter.
The interface anisotropy ε* does not change the dendritic area Sd and the dendritic perimeter
Pd much. Qualitatively, the interface anisotropic ε* parameter does not have a significant
impact on the dendritic morphology. Quantitatively, as shown in figure 8, the dendritic area
and dendritic perimeter is sensitively dependent on the interface mobility Mf. A small
increase of Mf substantially promotes the dendritic growth.

As illustrated in figure 8(c), the Cu segregation κ generally increases as the interface
mobility Mf increases. The relationship between κ and Mf is not strictly monotonic. How-
ever, when figures 8(c) and 6(c) are compared, it is seen that the process parameters have

Figure 9. 3D contours of dendritic area as a function of thermodynamic parameters,
with different fixed values of process parameters.
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stronger effects on the magnitude of Cu segregation than the thermodynamic parameters. The
variation bound for κ in figure 6(c) is [10.60, 15.40], compared to [12.74, 13.28] in
figure 8(c).

The dendritic primary arm length Pd is shown to be a nonlinear function of thermo-
dynamic parameters, as in figure 8(d). However, the variation is fairly mild, as most of the
dendrites achieve roughly the same tip location with different thermodynamic parameters.
There is a weak positive correlation between the interface mobility Mf and the dendritic
primary arm length Pd.

To further visualize the effect of all process and thermodynamic parameters on the
dendrite, 3D contours of all QoIs, i.e. the dendritic area, dendritic perimeter, Cu segregation,
and dendritic primary arm length, are plotted in figures 9–12, respectively. The process
parameters are further divided into subplot of each figure, where the cooling rate T

t

¶
¶

and the
initial temperature T0 are fixed at four corners of the SG, corresponding to the lower and
upper bounds of each parameters. The QoIs are then plotted as functions of three thermo-
dynamic parameters, i.e. prefactor of interfacial energy stiffness 0*s , interface anisotropy ε*,
and interface mobility Mf, using 3D contour plots.

Figure 9 shows the dendritic area variation as a function of thermodynamic parameters.
Initial temperature T0 plays a major role in dendritic growth, as slightly lower temperature

Figure 10. 3D contours of dendrite parameter as a function of thermodynamic
parameters, with different fixed values of process parameters.
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significantly accelerates dendritic area. An increase in interface mobility Mf corresponds to an
increase in dendritic area. Figure 10 shows the dendritic perimeter variations as a function of
input parameters. The dendritic area and dendritic perimeter are highly correlated, as shown in
figures 9 and 10. Figure 11 plots the Cu segregation κ, showing a mild variation with respect
to thermodynamic parameters. Namely, lower interface anisotropy ε* and higher interface
mobility Mf generally result in higher κ. However, as shown previously in figure 6(c), the Cu
segregation κ is more sensitive to the initial temperature T0, compared to other thermo-
dynamic parameters. It has been shown that high κ promotes the θ phase Al2C on the grain
boundary or inside the grain, consequently resulting in a higher mechanical strength of
material. Figure 12 presents the dendritic primary arm length, showing a mild dependence on
the initial temperature T0 and the interface mobility Mf, as in figures 6(d) and 8(d),
respectively. Readers are referred to the online version of color plots.

5.2. PDFs and statistics of the QoIs with respect to random thermodynamic parameters

In this section, non-intrusive spectral projection is applied to compute the PCE coefficients
and the distribution of the QoIs. The process parameters, T0 and T

t

¶
¶
, are set to be fixed

assuming that those variables are controllable in practice. The thermodynamic parameters, 0*s ,

Figure 11. 3D contours of Cu segregation as a function of thermodynamic parameters,
with different fixed values of process parameters.
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ε*, and Mf, however, are assumed to be random, and uniformly distributed between the lower
and upper bounds according to table 3.

UQToolKit [81, 82] is utilized to calculate PCE coefficients, which are obtained by
Galerkin projection in theory. Orthogonal Legendre polynomials of the sixth order are used in
constructing the PDFs of the QoIs. A two-dimensional SG is constructed for process para-
meters. A PDF is constructed at each node of the SG. The mean and standard deviation are
then calculated for each node, i.e. each fixed couple of values of process parameters. These
quantities are then reconstructed on the whole two-dimensional process parameter space using
SG formulation.

Figures 13(a)–(d) show the PDFs of the dendritic area, dendritic perimeter, Cu segre-
gation, and the dendritic arm length, respectively, where the thermodynamic parameters in
table 3, namely σ0

*, ε*, and Mf are considered to be uniformly distributed between the lower
and upper bounds. Several observations are made. First, the dendritic area and perimeter are
highly correlated. Second, as shown in figures 13(a) and (b), the initial temperature T0 is the
dominant factor for the dendritic growth in terms of size, that decreasing the initial temp-
erature T0 corresponding to larger dendrite size. The cooling rate T

t

¶
¶

also affects the dendrite
size, but is a less dominant factor. The same observation can be made for the Cu segregation

Figure 12. 3D contours of dendritic primary arm length as a function of thermodynamic
parameters, with different fixed values of process parameters.
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κ, as shown in figure 13(c). It is also observed that the standard deviation of the Cu segre-
gation κ only changes mildly, with different process parameters, as opposed to substantial
changes in the standard deviations of dendritic area and dendritic perimeter. The dendritic
primary arm length is more unpredictable, as shown in figure 13(d), where the mean deviates
slightly around 100 μm. The observations are consistent with the previous observation in
section 5.1.

Figures 14 and 15 show the prediction map of the mean and standard deviation,
respectively. The predicted mean is similar to the prediction shown in figure 6. Figure 15
indicates that there is a weak correlation between the statistical standard deviation and the
statistical mean for the first three QoIs, namely the dendritic area, the dendritic perimeter, and
the Cu segregation. The dendritic primary arm length appears to be a nonlinear function, and
weakly dependent on the initial temperature.

6. Discussion

In this study, we investigate the dendrite properties with respect to thermodynamic and
process parameters. While process parameters can be controlled, the thermodynamic para-
meters are materials properties and cannot be controlled, but can be quantified with certain
variation ranges. Different thermodynamic parameters result in different dendritic morph-
ology and properties.

Figure 13. Probability density function of QoIs at different process parameters, where
the thermodynamic parameters are distributed uniformly between the lower and upper
bounds in table 3.
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The variation of dendrite properties with respect to the thermodynamic parameters can be
used as a guide for thermodynamic parameters calibration. Qualitative analysis includes
comparison between experimental and simulated dendritic morphology, and rough estimation
of dendrite size with respect to solidification time. The dendrite shape can also be quanti-
tatively measured by shape descriptors, which are extracted via image processing techniques.
Figure 16 presents the shape analysis based on the medial axis method. The extracted skeleton
contains shape information, which can be used for shape matching. However, one of the main
challenges in shape matching is the inherent randomness in composition and interface
distributions.

The process parameters are typically controlled during the manufacturing process, where
sensors can be embedded and controllers are activated. However, fluctuation still exists for
controllable process parameters, which leads to imperfect control conditions.

Figure 14. Statistical means of the QoIs, where PDFs are shown in figure 13.
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7. Conclusion

In this work, the effects of parameter uncertainty on the PFM prediction of process-structure
relationships in alloy solidification are investigated. Five input parameters for PFM simula-
tions are included, two of which are process parameters, and the other three are thermo-
dynamic parameters. Image processing techniques are utilized to extract structural descriptors
analyze the dendritic morphology quantitatively. The UQ study is conducted based on SG
with a high-dimensional interpolation framework. 19313 PFM simulations are performed
with different input parameters, where the bounds are chosen a priori. It is shown that the
count of secondary arm necessarily correlates with the dendritic area and dendritic perimeter.
The dendritic area is positively correlated with the dendritic perimeter, i.e. dendrite with
larger area also has a longer perimeter. The UQ study aims to establish the structure-property
relationship between the dendritic morphology and the high-dimensional process and ther-
modynamic input parameter space. The variation of dendrite properties has also been
explored, in which thermodynamic parameters play a major role. Both process and

Figure 15. Standard deviations (std’s) of the QoIs, where PDFs are shown in figure 13.
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thermodynamic parameters are shown to affect the dendritic growth, resulting in different
microstructure, and thus different materials properties.

Acknowledgments

The research is supported in part by the National Science Foundation under Grant Number
CMMI-1306996. HT acknowledges supports by US Department of Energy through FAS-
TMath SciDAC institute. The authors are thankful to anonymous reviewers for the comments
to improve the manuscript.

ORCID iDs

Anh Tran https://orcid.org/0000-0002-8629-7161
Dehao Liu https://orcid.org/0000-0002-6437-7929
Yan Wang https://orcid.org/0000-0001-9324-4191

References

[1] Liu D and Wang Y 2019 Mesoscale multi-physics simulation of rapid solidification of Ti-6Al-4V
alloy Additive Manuf. 25 551–62

[2] Chernatynskiy A, Phillpot S R and LeSar R 2013 Uncertainty quantification in multiscale
simulation of materials: a prospective Annu. Rev. Mater. Res. 43 157–82

[3] Wang Y 2015 Uncertainty in materials modeling, simulation, and development for ICME Proc.
2015 Materials Science and Technology

[4] Wang Y and Swiler L 2018 Special issue on uncertainty quantification in multiscale system design
and simulation ASCE-ASME J. Risk Uncertain. Eng. Syst. B 4 010301

[5] Lejaeghere K, Van Speybroeck V, Van Oost G and Cottenier S 2014 Error estimates for solid-state
density-functional theory predictions: an overview by means of the ground-state elemental
crystals Crit. Rev. Solid State Mater. Sci. 39 1–24

Figure 16. Skeletonization of the dendrite in figure 3 at different snapshots.

Modelling Simul. Mater. Sci. Eng. 27 (2019) 064005 A Tran et al

25

https://orcid.org/0000-0002-8629-7161
https://orcid.org/0000-0002-8629-7161
https://orcid.org/0000-0002-8629-7161
https://orcid.org/0000-0002-6437-7929
https://orcid.org/0000-0002-6437-7929
https://orcid.org/0000-0002-6437-7929
https://orcid.org/0000-0001-9324-4191
https://orcid.org/0000-0001-9324-4191
https://orcid.org/0000-0001-9324-4191
https://doi.org/10.1016/j.addma.2018.12.005
https://doi.org/10.1016/j.addma.2018.12.005
https://doi.org/10.1016/j.addma.2018.12.005
https://doi.org/10.1146/annurev-matsci-071312-121708
https://doi.org/10.1146/annurev-matsci-071312-121708
https://doi.org/10.1146/annurev-matsci-071312-121708
https://doi.org/10.1115/1.4037447
https://doi.org/10.1080/10408436.2013.772503
https://doi.org/10.1080/10408436.2013.772503
https://doi.org/10.1080/10408436.2013.772503


[6] Pernot P, Civalleri B, Presti D and Savin A 2015 Prediction uncertainty of density functional
approximations for properties of crystals with cubic symmetry J. Phys. Chem. A 119 5288–304

[7] Mortensen J J, Kaasbjerg K, Frederiksen S L, Nørskov J K, Sethna J P and Jacobsen K W 2005
Bayesian error estimation in density-functional theory Phys. Rev. Lett. 95 216401

[8] Hanke F 2011 Sensitivity analysis and uncertainty calculation for dispersion corrected density
functional theory J. Comput. Chem. 32 1424–30

[9] He L and Wang Y 2015 An efficient saddle point search method using kriging metamodels ASME
2015 Int. Design Engineering Technical Conf. and Computers and In-formation in Engineering
Conf. (American Society of Mechanical Engineers) p V01AT02A008

[10] Tran A, He L and Wang Y 2018 An efficient first-principles saddle point searching method based
on distributed kriging metamodels ASCE-ASME J. Risk Uncertain. Eng. Syst. B 4 011006

[11] Rizzi F, Najm H, Debusschere B, Sargsyan K, Salloum M, Adalsteinsson H and Knio O 2012
Uncertainty quantification in MD simulations: I. Forward propagation Multiscale Model. Simul.
10 1428

[12] Jacobson L C, Kirby R M and Molinero V 2014 How short is too short for the interactions of a
water potential? Exploring the parameter space of a coarse-grained water model using
uncertainty quantification J. Phys. Chem. B 118 8190–202

[13] Patrone P N, Dienstfrey A, Browning A R, Tucker S and Christensen S 2016 Uncertainty
quantification in molecular dynamics studies of the glass transition temperature Polymer 87
246–59

[14] Frederiksen S L, Jacobsen K W, Brown K S and Sethna J P 2004 Bayesian ensemble approach to
error estimation of interatomic potentials Phys. Rev. Lett. 93 165501

[15] Cailliez F and Pernot P 2011 Statistical approaches to forcefield calibration and prediction
uncertainty in molecular simulation J. Chem. Phys. 134 054124

[16] Rizzi F, Najm H, Debusschere B, Sargsyan K, Salloum M, Adalsteinsson H and Knio O 2012
Uncertainty quantification in MD simulations: II. Bayesian inference of force-field parameters
Multiscale Model. Simul. 10 1460

[17] Angelikopoulos P, Papadimitriou C and Koumoutsakos P 2013 Data driven, predictive molecular
dynamics for nanoscale flow simulations under uncertainty J. Phys. Chem. B 117 14808–16

[18] Dhaliwal G, Nair P B and Singh C V 2018 Uncertainty analysis and estimation of robust AIREBO
parameters for graphene Carbon 142 300–10

[19] Tran A and Wang Y 2015 A molecular dynamics simulation mechanism with imprecise
interatomic potentials Proc. 3rd World Congress on Integrated Computational Materials
Engineering (ICME) (New York: Wiley) pp 131–8

[20] Tran A and Wang Y 2017 Reliable molecular dynamics: uncertainty quantification using interval
analysis in molecular dynamics simulation Comput. Mater. Sci. 127 141–60

[21] Reeve S T and Strachan A 2017 Error correction in multi-fidelity molecular dynamics simulations
using functional uncertainty quantification J. Comput. Phys. 334 207–20

[22] Tschopp M A, Rinderspacher B C, Nouranian S, Baskes M I, Gwaltney S R and Horstemeyer M F
2018 Quantifying parameter sensitivity and uncertainty for interatomic potential design:
application to saturated hydrocarbons ASCE-ASME J. Risk Uncertain. Eng. Syst. B 4 011004

[23] Wang Y 2013 Reliable kinetic Monte Carlo simulation based on random set sampling Soft
Comput. 17 1439–51

[24] Wang Y 2011 Multiscale uncertainty quantification based on a generalized hidden Markov model
J. Mech. Des. 133 031004

[25] Tallman A E, Swiler L P, Wang Y and McDowell D L 2017 Reconciled top-down and bottom-up
hierarchical multiscale calibration of bcc Fe crystal plasticity Int. J. Multiscale Comput. Eng. 15
505–23

[26] Bertini L, Brassesco S and Buttà P 2015 Front fluctuations for the stochastic Cahn-Hilliard
equation Braz. J. Probab. Stat. 29 336–71

[27] Funaki T 2016 Sharp interface limits for a stochastic Allen-Cahn equation Lectures on Random
Interfaces (Berlin: Springer) pp 93–110

[28] Bo L, Jiang Y and Wang Y 2008 Stochastic Cahn-Hilliard equation with fractional noise Stoch.
Dyn. 8 643–65

[29] Wang Y 2016 Model-form calibration in drift-diffusion simulation using fractional derivatives
ASCE-ASME J. Risk Uncertain. Eng. Syst. B 2 031006

[30] Karma A and Rappel W-J 1998 Quantitative phase-field modeling of dendritic growth in two and
three dimensions Phys. Rev. E 57 4323

Modelling Simul. Mater. Sci. Eng. 27 (2019) 064005 A Tran et al

26

https://doi.org/10.1021/jp509980w
https://doi.org/10.1021/jp509980w
https://doi.org/10.1021/jp509980w
https://doi.org/10.1103/PhysRevLett.95.216401
https://doi.org/10.1002/jcc.21724
https://doi.org/10.1002/jcc.21724
https://doi.org/10.1002/jcc.21724
https://doi.org/10.1115/1.4037459
https://doi.org/10.1137/110853169
https://doi.org/10.1021/jp5012928
https://doi.org/10.1021/jp5012928
https://doi.org/10.1021/jp5012928
https://doi.org/10.1016/j.polymer.2016.01.074
https://doi.org/10.1016/j.polymer.2016.01.074
https://doi.org/10.1016/j.polymer.2016.01.074
https://doi.org/10.1016/j.polymer.2016.01.074
https://doi.org/10.1103/PhysRevLett.93.165501
https://doi.org/10.1063/1.3545069
https://doi.org/10.1137/110853170
https://doi.org/10.1021/jp4084713
https://doi.org/10.1021/jp4084713
https://doi.org/10.1021/jp4084713
https://doi.org/10.1016/j.carbon.2018.10.020
https://doi.org/10.1016/j.carbon.2018.10.020
https://doi.org/10.1016/j.carbon.2018.10.020
https://doi.org/10.1016/j.commatsci.2016.10.021
https://doi.org/10.1016/j.commatsci.2016.10.021
https://doi.org/10.1016/j.commatsci.2016.10.021
https://doi.org/10.1016/j.jcp.2016.12.039
https://doi.org/10.1016/j.jcp.2016.12.039
https://doi.org/10.1016/j.jcp.2016.12.039
https://doi.org/10.1115/1.4037455
https://doi.org/10.1007/s00500-013-1013-y
https://doi.org/10.1007/s00500-013-1013-y
https://doi.org/10.1007/s00500-013-1013-y
https://doi.org/10.1115/1.4003537
https://doi.org/10.1615/IntJMultCompEng.2017021859
https://doi.org/10.1615/IntJMultCompEng.2017021859
https://doi.org/10.1615/IntJMultCompEng.2017021859
https://doi.org/10.1615/IntJMultCompEng.2017021859
https://doi.org/10.1214/14-BJPS267
https://doi.org/10.1214/14-BJPS267
https://doi.org/10.1214/14-BJPS267
https://doi.org/10.1142/S0219493708002500
https://doi.org/10.1142/S0219493708002500
https://doi.org/10.1142/S0219493708002500
https://doi.org/10.1115/1.4032312
https://doi.org/10.1103/PhysRevE.57.4323


[31] Jaafar M A, Rousse D R, Gibout S and Bédécarrats J-P 2017 A review of dendritic growth during
solidification: mathematical modeling and numerical simulations Renew. Sustain. Energy Rev.
74 1064–79

[32] Sekerka R 1965 A stability function for explicit evaluation of the Mullins-Sekerka interface
stability criterion J. Appl. Phys. 36 264–8

[33] Glicksman M E 2010 Principles of Solidification: An Introduction to Modern Casting and Crystal
Growth Concepts (New York: Springer)

[34] Karma A 2001 Phase-field formulation for quantitative modeling of alloy solidification Phys. Rev.
Lett. 87 115701

[35] Kim S G 2007 A phase-field model with antitrapping current for multicomponent alloys with
arbitrary thermodynamic properties Acta Mater. 55 4391–9

[36] Tiaden J, Nestler B, Diepers H-J and Steinbach I 1998 The multiphase-field model with an
integrated concept for modelling solute diffusion Physica D 115 73–86

[37] Eiken J, Böttger B and Steinbach I 2006 Multiphase-field approach for multicomponent alloys
with extrapolation scheme for numerical application Phys. Rev. E 73 066122

[38] Mullins W W and Sekerka R F 1963 Morphological stability of a particle growing by diffusion or
heat flow J. Appl. Phys. 34 323–9

[39] Mullins W W and Sekerka R 1964 Stability of a planar interface during solidification of a dilute
binary alloy J. Appl. Phys. 35 444–51

[40] Langer J, Sekerka R and Fujioka T 1978 Evidence for a universal law of dendritic growth rates
J. Cryst. Growth 44 414–8

[41] Langer J and Müller-Krumbhaar H 1978 Theory of dendritic growth-I. Elements of a stability
analysis Acta Metall. 26 1681–7

[42] Langer J S 1980 Instabilities and pattern formation in crystal growth Rev. Mod. Phys. 52 1
[43] Xing H, Dong X, Wang J and Jin K 2018 Orientation dependence of columnar dendritic growth

with sidebranching behaviors in directional solidification: insights from phase-field simulations
Metall. Mater. Trans. B 49 1547–59

[44] Takaki T, Rojas R, Sakane S, Ohno M, Shibuta Y, Shimokawabe T and Aoki T 2017 Phase-field-
lattice Boltzmann studies for dendritic growth with natural convection J. Cryst. Growth 474
146–53

[45] Qi X B, Chen Y, Kang X H, Li D Z and Gong T Z 2017 Modeling of coupled motion and growth
interaction of equiaxed dendritic crystals in a binary alloy during solidification Sci. Rep. 7
45770

[46] Liu D and Wang Y 2017 Mesoscale multi-physics simulation of solidification in selective laser
melting process using a phase field and thermal lattice Boltzmann model ASME 2017 Int.
Design Engineering Technical Conferences and Computers and Information in Engineering
Conf. (American Society of Mechanical Engineers) p V001T02A027

[47] Boukellal A K, Debierre J-M, Reinhart G and Nguyen-Thi H 2018 Scaling laws governing the
growth and interaction of equiaxed al-cu dendrites: a study combining experiments with phase-
field simulations Materialia 1 62–9

[48] Fezi K and Krane M 2015 Uncertainty quantification in solidification modelling IOP Conf. Ser.:
Mater. Sci. Eng. 84 012001

[49] Fezi K and Krane M 2016 Uncertainty quantification of modelling of equiaxed solidification IOP
Conf. Ser.: Mater. Sci. Eng. 143 012028

[50] Fezi K and Krane M J M 2017 Uncertainty quantification in modelling equiaxed alloy
solidification Int. J. Cast Met. Res. 30 34–49

[51] Fezi K and Krane M J M 2017 Uncertainty quantification in modeling metal alloy solidification
J. Heat Transfer 139 082301

[52] Plotkowski A and Krane M 2017 Quantification of epistemic uncertainty in grain attachment
models for equiaxed solidification Metall. Mater. Trans. B 48 1636–51

[53] Barthelmann V, Novak E and Ritter K 2000 High dimensional polynomial interpolation on sparse
grids Adv. Comput. Math. 12 273–88

[54] Novak E and Ritter K 1999 Simple cubature formulas with high polynomial exactness
Constructive Approx. 15 499–522

[55] Bungartz H-J and Griebel M 2004 Sparse grids Acta Numer. 13 147–269
[56] Nobile F, Tempone R and Webster C G 2008 A sparse grid stochastic collocation method for

partial differential equations with random input data SIAM J. Numer. Anal. 46 2309–45

Modelling Simul. Mater. Sci. Eng. 27 (2019) 064005 A Tran et al

27

https://doi.org/10.1016/j.rser.2017.02.050
https://doi.org/10.1016/j.rser.2017.02.050
https://doi.org/10.1016/j.rser.2017.02.050
https://doi.org/10.1063/1.1713887
https://doi.org/10.1063/1.1713887
https://doi.org/10.1063/1.1713887
https://doi.org/10.1103/PhysRevLett.87.115701
https://doi.org/10.1016/j.actamat.2007.04.004
https://doi.org/10.1016/j.actamat.2007.04.004
https://doi.org/10.1016/j.actamat.2007.04.004
https://doi.org/10.1016/S0167-2789(97)00226-1
https://doi.org/10.1016/S0167-2789(97)00226-1
https://doi.org/10.1016/S0167-2789(97)00226-1
https://doi.org/10.1103/PhysRevE.73.066122
https://doi.org/10.1063/1.1702607
https://doi.org/10.1063/1.1702607
https://doi.org/10.1063/1.1702607
https://doi.org/10.1063/1.1713333
https://doi.org/10.1063/1.1713333
https://doi.org/10.1063/1.1713333
https://doi.org/10.1016/0022-0248(78)90007-6
https://doi.org/10.1016/0022-0248(78)90007-6
https://doi.org/10.1016/0022-0248(78)90007-6
https://doi.org/10.1016/0001-6160(78)90078-0
https://doi.org/10.1016/0001-6160(78)90078-0
https://doi.org/10.1016/0001-6160(78)90078-0
https://doi.org/10.1103/RevModPhys.52.1
https://doi.org/10.1007/s11663-018-1265-0
https://doi.org/10.1007/s11663-018-1265-0
https://doi.org/10.1007/s11663-018-1265-0
https://doi.org/10.1016/j.jcrysgro.2016.11.099
https://doi.org/10.1016/j.jcrysgro.2016.11.099
https://doi.org/10.1016/j.jcrysgro.2016.11.099
https://doi.org/10.1016/j.jcrysgro.2016.11.099
https://doi.org/10.1038/srep45770
https://doi.org/10.1038/srep45770
https://doi.org/10.1016/j.mtla.2018.04.008
https://doi.org/10.1016/j.mtla.2018.04.008
https://doi.org/10.1016/j.mtla.2018.04.008
https://doi.org/10.1088/1757-899X/84/1/012001
https://doi.org/10.1088/1757-899X/143/1/012028
https://doi.org/10.1080/13640461.2016.1213525
https://doi.org/10.1080/13640461.2016.1213525
https://doi.org/10.1080/13640461.2016.1213525
https://doi.org/10.1115/1.4036280
https://doi.org/10.1007/s11663-017-0933-9
https://doi.org/10.1007/s11663-017-0933-9
https://doi.org/10.1007/s11663-017-0933-9
https://doi.org/10.1023/A:1018977404843
https://doi.org/10.1023/A:1018977404843
https://doi.org/10.1023/A:1018977404843
https://doi.org/10.1007/s003659900119
https://doi.org/10.1007/s003659900119
https://doi.org/10.1007/s003659900119
https://doi.org/10.1017/S0962492904000182
https://doi.org/10.1017/S0962492904000182
https://doi.org/10.1017/S0962492904000182
https://doi.org/10.1137/060663660
https://doi.org/10.1137/060663660
https://doi.org/10.1137/060663660


[57] Smolyak S A 1963 Quadrature and interpolation formulas for tensor products of certain classes of
functions Dokl. Akad. Nauk. SSSR 148 1042–5

[58] Wasilkowski G W and Woźniakowski H 1995 Explicit cost bounds of algorithms for multivariate
tensor product problems J. Complexity 11 1–56

[59] Clenshaw C W and Curtis A R 1960 A method for numerical integration on an automatic
computer Numer. Math. 2 197–205

[60] Xiu D and Karniadakis G E 2002 The Wiener-Askey polynomial chaos for stochastic differential
equations SIAM J. Sci. Comput. 24 619–44

[61] Najm H N 2009 Uncertainty quantification and polynomial chaos techniques in computational
fluid dynamics Annual Review of Fluid Mechanics 41 35–52

[62] Ghanem R et al 2000 Modal properties of a space-frame with localized system uncertainties 8th
ASCE Specialty Conf. of Probabilistic Mechanics and Structural Reliability, ASCE (Citeseer)

[63] Le Mair̂e O P, Reagan M T, Najm H N, Ghanem R G and Knio O M 2002 A stochastic projection
method for fluid flow: II. Random process J. Comput. Phys. 181 9–44

[64] Reagana M T, Najm H N, Ghanem R G and Knio O M 2003 Uncertainty quantification in reacting-
flow simulations through non-intrusive spectral projection Combust. Flame 132 545–55

[65] Steinbach I 2008 Effect of interface anisotropy on spacing selection in constrained dendrite growth
Acta Mater. 56 4965–71

[66] Steinbach I 2009 Phase-field models in materials science Modell. Simul. Mater. Sci. Eng. 17
073001

[67] Tegeler M, Shchyglo O, Kamachali R D, Monas A, Steinbach I and Sutmann G 2017 Parallel
multiphase field simulations with OpenPhase Comput. Phys. Commun. 215 173–87

[68] Medvedev D, Varnik F and Steinbach I 2013 Simulating mobile dendrites in a flow Proc. Comput.
Sci. 18 2512–20

[69] Stoyanov M 2015 User manual: TASMANIAN sparse grids Tech. Rep. ORNL/TM-2015/596
Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN

[70] Stoyanov M K and Webster C G 2016 A dynamically adaptive sparse grids method for quasi-
optimal interpolation of multidimensional functions Comput. Math. Appl. 71 2449–65

[71] Stoyanov M 2013 Hierarchy-direction selective approach for locally adaptive sparse grids Tech.
Rep. ORNL/TM-2013/384 Oak Ridge National Laboratory, One Bethel Valley Road, Oak
Ridge, TN

[72] Stoyanov M, Lebrun-Grandie D, Burkardt J and Munster D 2013 Tasmanian Computer Software
USDOE (https://doi.org/10.11578/dc.20171025.on.1087)

[73] Tourret D and Karma A 2015 Growth competition of columnar dendritic grains: a phase-field
study Acta Mater. 82 64–83

[74] Bostanabad R, Zhang Y, Li X, Kearney T, Brinson L C, Apley D W, Liu W K and Chen W 2018
Computational microstructure characterization and reconstruction: review of the state-of-the-art
techniques Prog. Mater. Sci. 95 1–41

[75] Liu Y, Greene M S, Chen W, Dikin D A and Liu W K 2013 Computational microstructure
characterization and reconstruction for stochastic multiscale material design Comput.-Aided
Des. 45 65–76

[76] Li D 2014 Review of structure representation and reconstruction on mesoscale and microscale
JOM 66 444–54

[77] Bargmann S, Klusemann B, Markmann J, Schnabel J E, Schneider K, Soyarslan C and Wilmers J
2018 Generation of 3D representative volume elements for heterogeneous materials: a review
Prog. Mater. Sci. 96 322–84

[78] Suzuki S et al 1985 Topological structural analysis of digitized binary images by border following
Comput. Vis. Graph. Image Process. 30 32–46

[79] Bradski G 2000 The OpenCV library Dr. Dobb’s J. Softw. Tools 2236121
[80] Barros A S, Magno I A, Souza F A, Mota C A, Moreira A L, Silva M A and Rocha O L 2015

Measurements of microhardness during transient horizontal directional solidification of Al-rich
Al–Cu alloys: effect of thermal parameters, primary dendrite arm spacing and Al2Cu
intermetallic phase Met. Mater. Int. 21 429–39

[81] Debusschere B J, Najm H N, Pébay P P, Knio O M, Ghanem R G and Le Mait̂re O P 2004
Numerical challenges in the use of polynomial chaos representations for stochastic processes
SIAM J. Sci. Comput. 26 698–719

[82] Debusschere B, Sargsyan K, Safta C and Chowdhary K 2016 Uncertainty quantification toolkit
(UQTk) Handbook of Uncertainty Quantification (New York: Springer) pp 1–21

Modelling Simul. Mater. Sci. Eng. 27 (2019) 064005 A Tran et al

28

https://doi.org/10.1006/jcom.1995.1001
https://doi.org/10.1006/jcom.1995.1001
https://doi.org/10.1006/jcom.1995.1001
https://doi.org/10.1007/BF01386223
https://doi.org/10.1007/BF01386223
https://doi.org/10.1007/BF01386223
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1146/annurev.fluid.010908.165248
https://doi.org/10.1146/annurev.fluid.010908.165248
https://doi.org/10.1146/annurev.fluid.010908.165248
https://doi.org/10.1006/jcph.2002.7104
https://doi.org/10.1006/jcph.2002.7104
https://doi.org/10.1006/jcph.2002.7104
https://doi.org/10.1016/S0010-2180(02)00503-5
https://doi.org/10.1016/S0010-2180(02)00503-5
https://doi.org/10.1016/S0010-2180(02)00503-5
https://doi.org/10.1016/j.actamat.2008.06.009
https://doi.org/10.1016/j.actamat.2008.06.009
https://doi.org/10.1016/j.actamat.2008.06.009
https://doi.org/10.1088/0965-0393/17/7/073001
https://doi.org/10.1088/0965-0393/17/7/073001
https://doi.org/10.1016/j.cpc.2017.01.023
https://doi.org/10.1016/j.cpc.2017.01.023
https://doi.org/10.1016/j.cpc.2017.01.023
https://doi.org/10.1016/j.procs.2013.05.431
https://doi.org/10.1016/j.procs.2013.05.431
https://doi.org/10.1016/j.procs.2013.05.431
https://doi.org/10.1016/j.camwa.2015.12.045
https://doi.org/10.1016/j.camwa.2015.12.045
https://doi.org/10.1016/j.camwa.2015.12.045
https://doi.org/10.11578/dc.20171025.on.1087
https://doi.org/10.1016/j.actamat.2014.08.049
https://doi.org/10.1016/j.actamat.2014.08.049
https://doi.org/10.1016/j.actamat.2014.08.049
https://doi.org/10.1016/j.pmatsci.2018.01.005
https://doi.org/10.1016/j.pmatsci.2018.01.005
https://doi.org/10.1016/j.pmatsci.2018.01.005
https://doi.org/10.1016/j.cad.2012.03.007
https://doi.org/10.1016/j.cad.2012.03.007
https://doi.org/10.1016/j.cad.2012.03.007
https://doi.org/10.1007/s11837-013-0848-0
https://doi.org/10.1007/s11837-013-0848-0
https://doi.org/10.1007/s11837-013-0848-0
https://doi.org/10.1016/j.pmatsci.2018.02.003
https://doi.org/10.1016/j.pmatsci.2018.02.003
https://doi.org/10.1016/j.pmatsci.2018.02.003
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1007/s12540-015-4499-2
https://doi.org/10.1007/s12540-015-4499-2
https://doi.org/10.1007/s12540-015-4499-2
https://doi.org/10.1137/S1064827503427741
https://doi.org/10.1137/S1064827503427741
https://doi.org/10.1137/S1064827503427741

	1. Introduction
	2. Background
	2.1. Instability nature of dendritic growth and numerical stability of phase field formulation
	2.2. Sensitivity study of uncertainty on phase-field simulation of dendritic growth

	3. Stochastic collocation for UQ
	3.1. Sparse grid method for high-dimensional interpolation
	3.2. Non-intrusive spectral projection for uncertainty propagation

	4. Phase-field model for dendritic growth simulation
	4.1. Simulation procedure
	4.2. Dendritic perimeter
	4.3. Dendritic area
	4.4. Cu segregation
	4.5. Dendritic primary arm length
	4.6. Mesh convergence study

	5. Numerical results
	5.1. QoIs as functions of process and thermodynamic parameters
	5.2. PDFs and statistics of the QoIs with respect to random thermodynamic parameters

	6. Discussion
	7. Conclusion
	Acknowledgments
	References



