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Training machine learning tools such as neural networks require the availability of sizable
data, which can be difficult for engineering and scientific applications where experiments or
simulations are expensive. In this work, a novel multi-fidelity physics-constrained neural
network is proposed to reduce the required amount of training data, where physical knowl-
edge is applied to constrain neural networks, and multi-fidelity networks are constructed to
improve training efficiency. A low-cost low-fidelity physics-constrained neural network is
used as the baseline model, whereas a limited amount of data from a high-fidelity
physics-constrained neural network is used to train a second neural network to predict
the difference between the two models. The proposed framework is demonstrated with
two-dimensional heat transfer, phase transition, and dendritic growth problems, which
are fundamental in materials modeling. Physics is described by partial differential equa-
tions. With the same set of training data, the prediction error of physics-constrained
neural network can be one order of magnitude lower than that of the classical artificial
neural network without physical constraints. The accuracy of the prediction is comparable
to those from direct numerical solutions of equations. [DOI: 10.1115/1.4044400]
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1 Introduction
Machine learning (ML) tools, exemplified by the convolutional

neural network and its derivatives, have demonstrated success in
diverse fields. However, they are very data-hungry during training
and can easily fail in many applications where data are scarce and
expensive to collect. The root cause is the “curse of dimensionality”
in training the ML tools. As ML tools need to capture more detailed
patterns or sensitive features, more complex modeling structures
need to be introduced with more parameters and degrees of freedom.
As a result, training algorithms need to explore and exploit in a very
high-dimensional parameter space to search for optimal parameters.
When the dimension increases, the volume of parameter spaces
increases exponentially, so does the required amount of training
data to cover the space and ensure the convergence of training.
When the size of the training data set is small, overfitting can
occur. That is, the training results in a spurious relationship that
looks deceptively good but has low generality outside the labeled
data range.
In various engineering and scientific applications, the cost of

obtaining a large amount of data from high-fidelity (HF) simulations
or experiments can be prohibitive. For instance, recently, a convolu-
tional deep belief network [1]was used to extractmicrostructural fea-
tures from material images. Generative adversarial networks were
applied to generate synthetic images of material microstructures
[2]. However, these traditional neural networks are data-hungry,
which required large data sets (e.g., microstructural images) to
train. Data sparsity is the bottleneck for applying the state-of-the-art
ML techniques in the domains of engineering, where establishing
high-dimensional process-structure-property relationships for

either product or process design is the essential task. Transfer learn-
ing [3] is an approach to reduce the required amount of training data
for a target domain from themodel previously or concurrently trained
in a source domain where data available, by reusing the source data
(instance transfer) [4,5], previously trained features or basis functions
(feature representation transfer) [6,7], or previously trained parame-
ters (parameter transfer) [8,9]. It has been applied in engineering, e.g.,
by training neural networks based on simulation data first and subse-
quently adjusting them to experimental data [10]. Transfer learning
can be successful without much training in the target domain if the
source and target domains are very similar or the same. However,
the premise is that there are enough data available to train the
model in the source domain, as it is still a pure data-driven approach.
In engineering and scientific communities, human intelligence or
knowledge has been embodied as physical laws or models based
on centuries of data and knowledge accumulation. Giving up the
available physical knowledge and purely relying on data-driven
ML tools to identify the cause-effect relationships in physical sci-
ences and engineering canbe regarded as reinventing thewheel.Nev-
ertheless, ML provides tools for systematic searching and exploring
nonlinear and nonconvex relationships, which ismuchmore efficient
than ad hoc discovery. It is believed that training ML tools based on
prior knowledge of physics can help navigate the high-dimensional
parameter space with a small amount of training data.
It is envisioned that the efficiency of training ML tools under the

constraint of physical knowledge can be improved with small
sample sizes. The physical laws or models can guide the searching
and optimization procedures [11]. Generally, many physical laws
are mathematically described as the relationships between physical
quantities in the forms of ordinary differential equations (ODEs) or
partial differential equations (PDEs). Some important and useful
physical laws include but are not limited to conservation laws and
laws of classical mechanics and thermodynamics. These physical
laws have become the milestones of knowledge discovery in
various scientific and engineering domains. Based upon physical
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laws or principles, various physics-based modeling and simulation
techniques have been used to predict the behaviors of physical
systems. If trained properly, ML tools can be applied to predict
the physical properties of systems much more efficiently than tradi-
tional simulations [12]. Traditional simulation-based design optimi-
zation process, which usually requires a large number of iterative
simulation runs during the search, can be potentially accelerated
by using the ML predictions instead.
Incorporating physical meanings and physical knowledge in arti-

ficial neural networks (ANNs) has been studied from different per-
spectives. The first approach is to customize ANNs and incorporate
physical meanings in the architecture. It has been demonstrated that
ANN models can be applied to solve some special forms of optimi-
zation. For example, quadratic programming problems can be con-
verted to linear complementarity problems and solved iteratively by
projection neural networks [13,14]. Some efforts have been made
for incorporating prior knowledge into ANNs in order to improve
the training efficiency or prediction accuracy. Here, the training effi-
ciency means the convergence speed. For instance, prior knowledge
can be applied as preprocessing tools to filter training data [15,16]
or embedded as some analytical input–output functions in addi-
tional layers of ANNs [17,18] to improve the training efficiency.
Prior knowledge can also be expressed as rules and interpreted
with weights and basis functions in the ANN architecture, which
could be further refined using training data [19,20]. Similarly,
finite-element neural networks (FENNs) [21,22] can be constructed
by transforming a finite-element model to a neural network, where
the weights of a FENN have physical meanings of material proper-
ties and can be computed in advance without training. FENNs have
been used to obtain the solutions of differential equations for both
forward and inverse problems. The major challenge of incorporat-
ing physical meanings into the ANN architecture is the complexity
of customized networks. For instance, the number of weights in
FENNs is related to the number of nodes, which could be very
large for some high-dimensional problems with complex geometry.
The second approach to incorporate physical knowledge is treat-

ing it as constraints so that they can guide the training process. For
instance, prior knowledge can be embedded into ANNs as architec-
tural constraints and connection weight constraints to improve the
training efficiency [23]. In addition to functional values, the infor-
mation of derivatives has also been incorporated as prior knowledge
for support vector regression [24]. ANNs have been used to approx-
imate the solutions of PDEs. By transforming the original PDEs into
their weighted residual forms, the prior knowledge of model forms
and boundary values can be incorporated as penalty functions
during the training of ANNs [25]. Similarly, the original model
forms and boundary conditions (BCs), rather than their weighted
residual forms, can be directly embedded as regularization terms
into the objective function during the training process [26]. A reg-
ularization parameter has been introduced to control the trade-off
between data fitting and knowledge-based regularization [27]. It
has been shown that regularized ANNs such as multi-layer percep-
tron (MLP) and radial basis function (RBF) neural networks can
help obtain the solutions of ODEs and PDEs with higher accuracy
and lower memory requirement than traditional numerical methods
[28]. The initial and boundary conditions can also be incorporated
as the regularization terms to improve the efficiency of ANN train-
ing. For instance, a trial solution is formulated such that it contains
the information of both boundary conditions and the model form
[29,30]. However, it may be difficult to find trial solutions for
boundary value problems that are defined on irregular boundaries.
To tackle this problem, an MLP-RBF synergy model [31] was
further proposed, where the first part of the trial solution was
replaced by the RBF neural network so that the boundary conditions
on irregular boundaries can be satisfied. Another way to handle
arbitrary irregular boundaries is by introducing a length factor
[32] into the second part of the trial solution. As a measure of dis-
tance from the boundary, the length factor returns zero on the
boundary and nonzero inside the boundary so that the first part of
the trial solution is unaffected. Similarly, regularized ANNs were

applied to approximate the solutions of ODEs [33], and a compar-
ison was conducted between the performance of four different
ANNs to solve ODEs [34]. Instead of regularization, information
about boundary conditions can be explicitly used as equality con-
straints between the weights in ANNs such that a constrained back-
propagation training can be taken [35–37]. The effectiveness of
regularization during the ML training has been demonstrated in
the above work. However, the training efficiency is still limited in
high-dimensional problems, where the sampling of solutions from
PDEs or ODEs can be costly.
In this work, a multi-fidelity physics-constrained neural network

(MF-PCNN) is proposed. The concept of multi-fidelity has been
explored extensively in surrogate modeling, particularly the Gauss-
ian process (GP) or co-kriging. By integrating the data from HF
and low-fidelity (LF) simulations, the trade-off between efficiency
and accuracy for metamodeling can be made [38–40]. Multi-fidelity
Gaussian processmodeling has also been applied in design optimiza-
tion [41–43]. Here, the concept of multi-fidelity is introduced to
ANNs for the first time. The two major contributions of this paper
to ML methodology are as follows. First, a new scheme of multi-
fidelity physics-constrained neural network (PCNN) is proposed to
reduce the training cost by simultaneously incorporating physical
knowledge as constraints and using data with different fidelities.
Second, a new adaptive weighting scheme is proposed for regulari-
zation to control the convergence of individual losses associated
with training data and different types of physical constraints so that
a balance between data and physical knowledge is achieved.
Here, it is demonstrated that PCNNs can be constructed to approx-

imate the solutions of PDEs to predict the dynamic properties of
systems. Some solutions from the simulations serve as the training
data. The prior knowledge of PDEs, including the initial and bound-
ary conditions, is applied to guide the training process of PCNNs
with reduced searching space. The multi-fidelity concept is intro-
duced to further reduce the cost to obtain training data. By combining
a low-fidelity physics-constrained neural network (LF-PCNN) and a
high-fidelity physics-constrained neural network (HF-PCNN), an
MF-PCNN can be created with a lower training cost and higher pre-
diction accuracy than traditional ANNs. The LF-PCNN is trained
with low-fidelity simulation results, whereas the HF-PCNN is
trained from high-fidelity simulations. Then, another ANN called
discrepancy artificial neural network (DANN) is trained based on
the difference between the LF-PCNN and HF-PCNN predictions.
The MF-PCNN is constructed by combining the predictions from
the LF-PCNN and DANN. The advantage of the MF-PCNN is that
the overall computational cost to obtain training data can be
reduced by using the data with different fidelities. In this paper,
three examples are used to demonstrate the MF-PCNN framework.
The first example is the prediction of the temperature field in a heat
transfer problem. The second example is the prediction of the
phase field in a phase transition process. The third example is to
predict the dendritic growth during solidification based onmultiphy-
sics simulations. It is shown that the MF-PCNN can be constructed
with a limited amount of simulation data but achieve a good accuracy
of prediction.
In the remainder of this paper, the training of PCNNs, the

construction of MF-PCNNs, and the setup of the computational
scheme are described in Sec. 2. The computational results of the
examples are shown in Sec. 3.

2 Methodology
In MF-PCNNs, the training data for LF-PCNNs and HF-PCNNs

can be obtained from the analytical or numerical solutions of PDEs,
e.g., from the finite-element method (FEM). During the training, the
prior knowledge about the form of PDEs or boundary values is
added as the regularization terms in the loss function. The knowl-
edge constraints provide guidance to the searching direction for
optimization. The MF-PCNN is constructed based on the informa-
tion from the LF-PCNN as well as the additional information that
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the HF-PCNN provides. The cost of obtaining high-fidelity infor-
mation is higher than that of low-fidelity one. Therefore, the alloca-
tion of computational resources between high- and low-fidelity
simulations can help reduce the overall training cost.

2.1 Training of PCNNs. Generally, a wide range of physical
phenomena and dynamics can be described by PDEs, including
heat transfer, advection-diffusion process, fluid dynamics, and
others. Let us consider a time-dependent parametrized PDE with
the general form

P u,
∂u
∂t

,
∂u
∂x

,
∂2u
∂t2

,
∂2u
∂x2

, . . .
( )

= f (t, x), t ∈ [0, T], x ∈ Ω (1)

where u(t, x) is the hidden solution to be found, f (t, x) is a source or
sink term, t is the time, x = (x1, x2, . . . , xn) is the spatial vector, and
Ω∈ℝn denotes the definition domain. This general PDE is subject
to initial conditions (ICs)

I u,
∂u
∂t

,
∂2u
∂t2

, . . .
( )

= g(x), t = 0, x ∈ Ω (2)

and BCs

S u,
∂u
∂t

,
∂u
∂x

,
∂2u
∂t2

,
∂2u
∂x2

, . . .
( )

= h(t, x), t ∈ [0, T], x ∈ ∂Ω (3)

where ∂Ω is the boundary of the definition domain. A more compact
form of the above initial-boundary value problem can be written as

D[u(t, x)] = f (t, x), t ∈ [0, T], x ∈ Ω (4)

Λ[u(0, x)] = g(x), t = 0, x ∈ Ω (5)

Γ[u(t, x)] = h(t, x), t ∈ [0, T], x ∈ ∂Ω (6)

where D[ · ], Λ[ · ], and Γ[ · ] are differential operators. For exam-
ple, the three-dimensional (3D) heat equation without the source
term corresponds to D[u(t, x)] = ut − α(uxx + uyy + uzz) = 0, where
α is the thermal diffusivity, and the subscripts represent the
partial derivative with respect to either time or space.
In this work, the MLP architecture is used as a demonstra-

tion, which includes one input layer (t, x), multiple hidden layers,
and one output layer U(t, x) to approximate the true solution
u(t, x). The neurons are connected with those in the neighbor
layers, and the weights represent the strength of connections. The
output from the hidden layer to the following layer is calculated as

yi = φ
∑

wijθj + bi
( )

(7)

where wij is the weight of the connection between neuron j in the
previous layer and neuron i in the current layer, θj is the jth input
value from the previous layer, and bi is the bias for the neuron i
in the current layer. φ is a nonlinear activation function, which
can be sigmoid, tanh, rectified linear unit, or others.
The weights of a PCNN can be learned by minimizing the mean

squared loss or total cost function

E = λTET + λPEP + λIEI + λsEs (8)

where

ET =
1
NT

∑NT

i=1

|U(tTi , x
T
i ) − T(tTi , x

T
i )|

2

is the loss caused by the discrepancy between the training data T( · )
and the PCNN model prediction U( · ), {t(·)i , x(·)i } denotes the sam-
pling points in the defined domain, and N(·) denotes the number

of sampling points. Similarly,

EP =
1
NP

∑NP

i=1

|D[U(tPi , x
P
i )] − f (tPi , x

P
i )|

2

EI =
1
NI

∑NI

i=1

|Λ[U(tIi , x
I
i )] − g(xIi )|

2

and

ES =
1
NS

∑NS

i=1

|Γ[U(tSi , x
S
i )] − h(tSi , x

S
i )|

2

are the losses caused by the violations of the model, initial condi-
tions, and boundary conditions as the physical constraints from
Eqs. (4)–(6). The constraint on the weights of different losses is
given as

λT + λP + λI + λs = 1 (9)

The relative importance of prior knowledge can be adjusted by
changing the weights of physical constraints λP, λI, and λS. If the
total loss function only includes the training loss ET, then this is
the traditional pure data-driven ANN to solve the initial-boundary
value problem. It will be shown in Sec. 3.1 that assigning different
weights will affect the speed of training. An adaptive scheme to
assign the weights is proposed here so that the overall loss is calcu-
lated as

E =
E2
T + E2

P + E2
I + E2

S

ET + EP + EI + Es
(10)

for each iteration during the training process. That is, the weights
are proportional to individual losses from data and physical con-
straints. By adding physical losses EP, EI, and ES as the regulariza-
tion terms, the prior physical knowledge can help to reduce the size
of searching space and provide guidance for the searching direc-
tions in training.

2.2 Construction of MF-PCNNs. The LF-PCNN and
HF-PCNN must be trained first before the MF-PCNN is con-
structed. In this work, the fidelities are determined by the resolu-
tions of FEM simulations given the same density of physical
constraints. To be more specific, low-fidelity simulations are used
to construct the LF-PCNN during a long-time period t∈ [0, T ],
whereas high-resolution simulations are applied for the HF-PCNN
during a short-time period t∈ [0, T0] (T0 < T ).
After the LF-PCNN and HF-PCNN are trained, the difference

between the predictions of the LF-PCNN UL(t, x) and HF-PCNN
UH(t, x) is calculated as

δ(t, x) = UH(t, x) − UL(t, x), t ∈ [0, T0], x ∈ Ω (11)

Then, the DANN is constructed to predict the discrepancy
between the LF-PCNN and HF-PCNN, denoted as Uδ(t, x),
during a longer time period t∈ [0, T ]. The weights of the DANN
can be learned by using the observed discrepancy δ(t, x) as the train-
ing data to minimize the mean squared error (MSE) loss

Eδ =
1
Nδ

∑Nδ

i=1

|Uδ(ti, xi) − δ(ti, xi)|2, t ∈ [0, T0], x ∈ Ω (12)

where Nδ is the number of sampling points for the DANN. It is
assumed that the evolution of the difference between the
LF-PCNN and HF-PCNN during a longer time period t∈ [0, T ]
can be predicted by the DANN using the observed discrepancy
δ(t, x) as the training data during the short-time period t∈ [0, T0].
Then, the MF-PCNN is a combination of the LF-PCNN and
DANN. The prediction from the MF-PCNN during the time
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period t∈ [0, T ] is given by

UM(t, x) = UL(t, x) + Uδ(t, x), t ∈ [0, T], x ∈ Ω (13)

2.3 Experimental Setup of the Proposed MF-PCNN. The
construction and training of the MF-PCNN are accomplished by
using TENSORFLOW [44], which is an open-source PYTHON library
for machine learning. The partial derivatives of the ANNs are cal-
culated based on the chain rules using the automatic differentiation
[45]. Automatic differentiation is different from the numerical dif-
ferentiation such as the method of finite difference. By applying
the chain rules repeatedly, the derivatives of arbitrary order can
be computed automatically and accurately to a working precision.
Three examples are applied to demonstrate the proposed MF-

PCNN framework. The first example is a heat transfer problem
where the evolution of the two-dimensional (2D) temperature distri-
bution is modeled with the heat equation. The heat transfer example
is used to demonstrate the effectiveness of the proposed adaptive
weighting schemes of the total loss function. The second example
is the phase transition problem where the evolution of the 2D
phase field is modeled with the Allen-Cahn equation. The phase
transition example is utilized to demonstrate the MF-PCNN frame-
work. The third example is the dendritic growth during solidifica-
tion where heat transfer and phase transition are tightly coupled.
The purpose is to demonstrate the applicability of the proposed
MF-PCNN framework for complex multiphysics problems in mate-
rials design.
The details of the computational setup for different ML models in

the heat transfer, phase transition, and dendritic growth example are
listed in Tables 1–3, respectively. The ANNs, LF-PCNNs, and
HF-PCNNs have the same structure of 30-20-30-20. That is, each

of the networks has four layers. There are 30 neurons in the first
and third layer and 20 neurons in the second and last layer. The
neural network architecture was identified by conducting some
simple sensitivity studies. Finding the optimal architecture requires
some systematic searching and sampling procedures, which can be
done in future work. The structures of the tested DANNs are
5-5-5-5 and 10-10-10-10, which are simpler in order to avoid over-
fitting. For comparison purpose, two GP surrogate models with the
RBF kernel are also constructed to predict the difference between
the LF-PCNN and HF-PCNN. Only one run of the optimizer is per-
formed from the RBF kernel’s initial parameters. The noise level of
the RBF kernel is set to be alpha= 0.1 to prevent overfitting. The
hyperbolic tangent (tanh) function is used as the activation function.
All of the loss functions in neural networks are minimized by using
a gradient-based optimization algorithm called Adam [46].
The training data for the ANNs, LF-PCNNs, and HF-PCNNs

come from the FEM solutions of COMSOL, whereas the training
data for the DANNs and GPs come from the observed discrepancy
between the predictions of the LF-PCNNs and HF-PCNNs during
the short-time period t∈ [0, T0]. All FEM simulations are finished
in less than 1 min for these 2D problems. The training data and
physical constraints for the first two examples are sampled uni-
formly in both temporal and spatial dimensions. Random sampling
is used to obtain the LF and HF training data for the dendritic
growth example.
Notice that in a multi-fidelity modeling framework, the LF data

can come from LF models with lower resolutions, reduced-order
models, models with simplified geometry, and others where the
computational cost is lower than HF models. In this work, LF
data were taken from the FEM simulations with low resolutions.
The proposed MF-PCNN does not require a fixed hierarchy of fidel-
ities over the whole range of input parameters. That is, the LF and

Table 1 The setup for different ML models in the heat transfer example

ML model Structure
Amount of training

data (t × x× y)
Number of physical
constraints (t ×x×y)

Time period/
s

ANN 30-20-30-20 21 × 6 × 6 0 [0, 1]
PCNNs 30-20-30-20 21 × 6 × 6 41 × 11 × 11 [0, 1]

Table 2 The setup for different ML models in the phase transition example

ML model Structure
Amount of training

data (t× x× y)
Number of physical
constraints (t × x× y) Time period/s

ANN 30-20-30-20 21 × 6× 6 0 [0, 1]
LF-PCNN 30-20-30-20 21 × 6× 6 21 × 11 × 11 [0, 1]
HF-PCNN1 30-20-30-20 9 × 21 × 21 5 × 11 × 11 [0, 0.2]
HF-PCNN2 30-20-30-20 18 × 21 × 21 10 × 11 × 11 [0, 0.2], [0.8, 1]
DANN1 5-5-5-5 9 × 26 × 26 0 [0, 0.2]
DANN2 10-10-10-10 9 × 26 × 26 0 [0, 0.2]
DANN3 5-5-5-5 18 × 26 × 26 0 [0, 0.2], [0.8, 1]
DANN4 10-10-10-10 18 × 26 × 26 0 [0, 0.2], [0.8, 1]
GP1 RBF kernel 9 × 26 × 26 0 [0, 0.2]
GP2 RBF kernel 18 × 26 × 26 0 [0, 0.2], [0.8, 1]

Table 3 The setup for different ML models in the dendritic growth example

ML model Structure
Amount of training

data (t × x× y)
Number of physical
constraints (t × x× y) Time period/s

LF-PCNN1 30-20-30-20 2861 (random, Δt= 0.1) 21 × 21 × 21 [0, 1]
HF-PCNN1 30-20-30-20 3901 (random, Δt= 0.05) 5 × 21 × 21 [0, 0.2]
DANN1 5-5-5-5 9 × 51 × 51 0 [0, 0.2]
LF-PCNN2 30-20-30-20 2861 (random, Δt= 0.1) 11 × 41 × 41 [0, 1]
HF-PCNN2 30-20-30-20 3901 (random, Δt= 0.05) 3 × 41 × 41 [0, 0.2]
DANN2 5-5-5-5 9 × 51 × 51 0 [0, 0.2]
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HF data do not form a nested hierarchy for both spatial and time
domains.

2.3.1 Example 1: Heat Transfer. The evolution of temperature
distributions can be modeled by parabolic PDEs. The heat equation
describes the diffusion process of energy, which is important in
modeling microstructure evolution during phase transition. The
2D heat equation with the zero Neumann boundary condition
used in this example is

ut −0.01(uxx + uyy) = 0, t, x, y ∈ [0, 1]
u(0, x, y) = 0.5[sin (4πx) + sin (4πy)]
ux(t, 0, y) = 0
ux(t, 1, y) = 0
uy(t, x, 0) = 0
uy(t, x, 1) = 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(14)

where u is the 2D temperature field.
The goal of training a neural network is to ensure the prediction

U(t, x, y) from the neural network can approximate the true solution
u(t, x, y) from FEM simulations with the desired accuracy. In the
total loss function defined by Eq. (8), the training loss here is
given by

ET =
1
NT

∑NT

i=1

|U(tTi , x
T
i , y

T
i ) − T(tTi , x

T
i , y

T
i )|

2
(15)

The physical loss is

EP =
1
NP

∑NP

i=1

Ut(tPi , x
P
i , y

P
i ) − 0.01[Uxx(tPi , x

P
i , y

P
i )

+Uyy(tPi , x
P
i , y

P
i )]

∣∣∣∣
∣∣∣∣2 (16)

The initial loss is given by

EI =
1
NI

∑NI

i=1

|U(0, xIi , y
I
i ) − 0.5[sin (4πxIi ) + sin (4πyIi )]|

2
(17)

The boundary loss is

ES =
1
NS

∑NS

i=1

|Ux(tSi , 0, y
S
i )|2 + |Ux(tSi , 1, y

S
i )|2

+ |Uy(tSi , x
S
i , 0)|2 + |Uy(tSi , x

S
i , 1)|2

[ ]
(18)

As shown in Table 1, the amount of training data for the heat
transfer example is NT= 21 × 6× 6, which means that there are 21
sampling points in the temporal dimension or time period, 6 sam-
pling points in the x-direction, and 6 sampling points in the
y-direction of the spatial domain. The simulation domain is x, y∈
[0, 1] and time period is t∈ [0, 1]. The training data for the heat
transfer example are from the FEM simulation where the grid
spacing is Δx= 0.2 and the time step is Δt= 0.05. For the PCNNs
in the heat transfer example, the number of physical constraints is
41 × 11 × 11= 4961. The grid spacing is Δx= 0.1 and the time
step is Δt= 0.025 for physical constraints. The numbers of sam-
pling points corresponding to the physical loss, initial loss, and
boundary loss are NP= 3240, NI= 121, and NS= 1600, respec-
tively, which sum up to 4961. In the heat transfer example, three dif-
ferent weighting schemes (PCNN1, PCNN2, and PCNN3) are
compared. The training of ANN and PCNNs stops when the total
loss E is lower than a threshold value of 0.01.

2.3.2 Example 2: Phase Transition. The second example is the
Allen-Cahn equation, which is a nonlinear reaction-diffusion equa-
tion that describes the process of phase transition such as grain
growth and spinodal decomposition. It has become the foundational
model for the interface diffusion in the phase-field method, which is
developed to study phase transitions and interfacial dynamics in
materials science. The Allen-Cahn equation with periodic boundary

condition in this example is

ut − 0.001(uxx + uyy) = u − u3, t, x, y ∈ [0, 1]
u(0, x, y) = 0.5[sin (4πx) + sin (4πy)]
u(t, 0, y) = u(t, 1, y)
ux(t, 0, y) = ux(t, 1, y)
u(t, x, 0) = u(t, x, 1)
uy(t, x, 0) = uy(t, x, 1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(19)

where a non-conserved variable u is the order parameter or phase
field.
Based on the results of the previous example, the weights of the

physical constraints are adaptively adjusted as in Eq. (10). The
training loss is given by

ET =
1
NT

∑NT

i=1

|U(tTi , x
T
i , y

T
i ) − T(tTi , x

T
i , y

T
i )|

2
(20)

The physical loss is given by

EP =
1
NP

∑NP

i=1

Ut(tPi , x
P
i , y

P
i ) − 0.001[Uxx(tPi , x

P
i , y

P
i )

+Uyy(tPi , x
P
i , y

P
i )] − U(tPi , x

P
i , y

P
i )

+U3(tPi , x
P
i , y

P
i )

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(21)

The initial loss is given by

EI =
1
NI

∑NI

i=1

|U(0, xIi , y
I
i ) − 0.5[sin (4πxIi ) + sin (4πyIi )]|

2
(22)

The boundary loss is given by

ES =
1
NS

∑NS

i=1

|U(tSi , 0, y
S
i ) − U(tSi , 1, y

S
i )|2

+|Ux(tSi , 0, y
S
i ) − Ux(tSi , 1, y

S
i )|2

+|U(tSi , x
S
i , 0) − U(tSi , x

S
i , 1)|2

+|Uy(tSi , x
S
i , 0) − Uy(tSi , x

S
i , 1)|2

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (23)

In the phase transition example, two HF-PCNNs (HF-PCNN1
and HF-PCNN2) are trained as shown in Table 2. The simulation
domain is x, y∈ [0, 1] and time period is t∈ [0, 1]. The training
data for the ANN and LF-PCNN are from the LF simulation
where the grid spacing is Δx= 0.2 and the time step is Δt= 0.05.
The training data for the HF-PCNNs are from the HF simulation
where the grid spacing is Δx= 0.05 and the time step is Δt=
0.025. Therefore, the training data for the HF-PCNNs is more accu-
rate and expensive than for the ANN and LF-PCNN. HF-PCNN1 is
trained during the time period t∈ [0, 0.2], whereas the HF-PCNN2
is trained during two time periods t∈ [0, 0.2] and t∈ [0.8, 1]. There-
fore, the amount of training data and the number of physical con-
straints for the HF-PCNN2 is twice of those for the HF-PCNN1.
The observed discrepancy between the predictions of the
LF-PCNN and HF-PCNN1 serves as the training data for the
DANN1, DANN2, and GP1. Here, the amount of training data
for the DANN1, DANN2, and GP1 is 9 × 26 × 26, which means
that the grid spacing is Δx= 0.04 and the time step is Δt= 0.025.
The difference between the HF and LF simulation data is not
used as the training data for the discrepancy function because
they may not be measured at the same location or time step. That
is, since the data are not in a nested hierarchy, the observed
discrepancy is obtained from the neural network predictions. Simi-
larly, the observed discrepancy between the predictions of the
LF-PCNN and HF-PCNN2 serves as the training data for the
DANN3, DANN4, and GP2. In this work, the difference between
the HF simulation data and the prediction of LF-PCNN is not
used as the training data for the discrepancy function. This is
because that more accurate predictions can be obtained by adding
physical constraints into the training of HF-PCNNs. Besides, the
trained HF-PCNNs can provide more training data to the DANNs
or GPs so that the constructed MF-PCNNs are more general and
have better prediction accuracy. For ANNs, LF-PCNNs, and
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HF-PCNNs, the training of a neural network stops when the total
loss E is lower than a threshold value 0.01. Similarly, the training
of a DANN stops when the loss function Eδ is below 0.01.

2.3.3 Example 3: Dendritic Growth. The third example is den-
dritic growth during solidification, where heat transfer and phase

transition are coupled with each other. In this multiphysics
problem, the heat equation and the Allen-Cahn equation need to
be solved simultaneously to predict the evolution of dendritic
growth. The coupled PDEs and corresponding boundary conditions
for the dendritic growth example are

0.001pt − 0.0001( pxx + pyy) = p(1 − p) p − 0.5 +
0.9
π

tan−1(10qe − 10q)

[ ]

p(0, x, y) = exp −
x2 + y2

0.04

( )
px(t, −2.5, y) = px(t, 2.5, y) = py(t, x, −2.5) = py(t, x, 2.5) = 0
0.001(qt − qxx + qyy) = 0.001Kpt
q(0, x, y) = 0
qx(t, −2.5, y) = qx(t, 2.5, y) = qy(t, x, −2.5) = qy(t, x, 2.5) = 0
t ∈ [0, 1], x, y ∈ [−2.5, 2.5]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

where p is the phase field and q is the temperature field. The liquidus
temperature qe and latent heat K are materials dependent and are the
design variables in materials design. That is, we need to find the best
material compositions corresponding to the optimal values of these
two variables so that the desirable dendritic growth behavior can be
obtained. The evolutions of dendrites are sensitive to the liquidus
temperature and latent heat of the materials [47]. The dendritic
growth (which can be quantified by the growth speed, symmetry,
secondary arm spacing, and other descriptors) affects the final
mechanical, thermal, and other properties of solid crystals. There-
fore, efficient ML predictions of dendritic growths help establish
the process-structure-property relationship for materials design. In
this simplified example, all variables in the coupled PDEs are
dimensionless. A scaling factor of 0.001 is multiplied at both
sides of the heat equation so that the magnitudes of the Allen-Cahn
equation and the heat equation are in the same scale. The normali-
zation procedure ensures the fast convergence of PCNNs.
In order to apply the proposed MF-PCNN framework to design

optimization, the design variables qe and K need to be included in
the inputs of the PCNN. To be more specific, the input for the
PCNN is (t, x, y, qe, K ). The training data for the phase field PT(t,
x, y, qe, K) and temperature field QT(t, x, y, qe, K) come from
FEM simulations. Then, the outputs of the PCNN are P(t, x, y, qe,
K) and Q(t, x, y, qe, K), which approximate the true phase field p
and temperature field q, respectively. The training of the PCNN
for design optimization will require multiple sets of design variables
and FEM simulation runs. In this example, we only demonstrate the
feasibility of multiphysics prediction. Only two sets of design var-
iables and FEM simulation data corresponding to two samples of
dendritic growth are used for the training of MF-PCNNs. For
each dendritic growth sample, the design variables qe and K have
constant values only, and two MF-PCNNs with a different
number of physical constraints are tested. The complete framework
of materials design based on the MF-PCNN will be demonstrated in
future work.
Similar to the previous two examples, loss functions are formu-

lated based on the PDEs as well as the initial and boundary condi-
tions. The adaptive weighting scheme in Eq. (10) is used to
maximize the overall reduction speed of the total loss. The predic-
tion of the MF-PCNN is a combination of the LF-PCNN prediction
and the DANN as in Eq. (13). The LF-PCNN is trained with coarse
simulation data during the time period t∈ [0, 1], and the HF-PCNN
is trained with the denser simulation data during the time period t∈
[0, 0.2]. The observed discrepancy between the predictions of
the LF-PCNN and HF-PCNN during the time period t∈ [0, 0.2]
serves as the training data for the DANN.
In the dendritic growth example, the simulation domain is x, y∈

[− 2.5, 2.5] and time period is t∈ [0, 1]. As listed in Table 3, the

training data for the LF-PCNNs are sampled randomly from the
FEM simulation, where the grid spacing is Δx= 0.01 and the time
step is Δt= 0.1. The training data for the HF-PCNNs are sampled
randomly from the FEM simulation, where the grid spacing is
Δx = 0.01 and the time step is Δt= 0.05. More training data are
used for the training of the HF-PCNNs to increase the prediction
accuracy. Compared with the LF-PCNN1 and HF-PCNN1, the
LF-PCNN2 and HF-PCNN2 have more physical constraints
involved. The training of the LF-PCNNs and HF-PCNNs stops
when the total loss E is lower than a threshold value of 0.0001. Sim-
ilarly, the training of the DANNs stops when the loss function Eδ is
below 0.005. The threshold values are lower than those in the pre-
vious examples because more accurate predictions are needed to
observe the complex dendritic shape.

3 Experimental Results
In this section, the results for the heat transfer, phase transition,

and dendritic growth examples are shown. The heat transfer
example is used to demonstrate the effectiveness of the proposed
adaptive weighting scheme for the total loss function. A conver-
gence analysis for the ANN and the PCNN is also conducted.
The phase transition example is to demonstrate the performance
of the MF-PCNN framework. The dendritic growth example is
used to demonstrate the applicability of the proposed MF-PCNN
framework for complex multiphysics problems in materials design.

3.1 Heat Transfer Example. To assess the sensitivity of
weights, three weighting schemes of the total loss function are
tested and compared with each other. In the PCNN1 listed in
Table 1, the weights are equal and fixed in the total loss function

E = 0.25(ET + EP + EI + Es) (25)

In the PCNN2, the weights are unequal and fixed in the total loss
function

E = 0.125(ET + 2EP + 4EI + Es) (26)

In the PCNN3, the weights are adaptive during the training as
shown in Eq. (10). Assigning larger weights to the physical con-
straints indicates that prior knowledge will be more influential in
the training process. When the training data are sparse, increasing
the number of physical constraints can help improve the training
efficiency. In addition, the weights of physical constraints need to
be large enough in order to ensure the training efficiency and pre-
diction accuracy. When the weights of physical constraints are
assigned, it is also necessary to consider the balance among different
losses so that the reduction speeds of the four errors are comparable.
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The ideal case is that the four losses are reduced at the same speed so
that the overall reduction speed of the total loss is maximized.
Here, the training data come from FEM solutions. Figure 1 shows

the original FEM solution of the temperature field, as well as the
predictions by the traditional ANN, the equally weighted PCNN1,
the unequallyweighted PCNN2, and the adaptively weighted
PCNN3 at t= 1, respectively. The errors of the predicted tempera-
ture fields compared with the original FEM solution for different
neural networks at t= 1 are shown in Fig. 2, respectively. Here,
the prediction error is the absolute difference between the prediction
from the neural network and the FEM solution. The dots in the
figures indicate the sampling positions in the 2D domain, where a
total of 26 × 26 samples are taken. It is seen that the prediction
from the ANN is less accurate than the three PCNNs, because of
the small training data set. The error is especially large in the area
around saddle points. Notice that the training data for the ANN
and PCNNs come from the same LF simulations. With the physical
constraints added as regularization terms, the prediction errors of
the PCNNs are reduced significantly.
The learning curves for different PCNNs are shown in Fig. 3. For

the three different PCNNs, all losses monotonically decrease during
the training. However, the difference between the convergence
speeds of individual losses varies with the different weighting
schemes. For the equally weighted PCNN1, as shown in Fig. 3(a),
the initial loss is one order of magnitude larger than the boundary
loss, meaning that the difference between the convergence speeds
of individual losses is large. Therefore, it takes a longer time for
the PCNN1 to converge. For the unequally weighted PCNN2, the
weights of physical constraints are higher in order to increase the
influence of prior knowledge. As a result, the different losses are
within the same order of magnitude, as shown in Fig. 3(b). As for
the adaptively weighted PCNN3, the weights are dynamically
adjusted based on the percentages of individual losses in the total
loss function. As shown in Fig. 3(c), the different losses converged
at the same speed and are well balanced. The training time is the
shortest among the three cases.

The quantitative comparisons of training time and theMSE of pre-
diction for the four neural networks are listed in Table 4. AllMSEs of
prediction for the PCNN1 and PCNN3 are almost one order of mag-
nitude lower than that for the ANN. As a result of stronger enforce-
ment for the physical constraints, the prediction accuracy of the
PCNN2 is higher than that of the PCNN1 at t= 0. However, the
MSE of prediction at t= 1 for the PCNN2 is larger than that of
the PCNN1. This could be caused by the in-balance between differ-
ent losses in the PCNN2. As shown in Fig. 3(b), the training loss is
still larger than the threshold value 0.01when the training is finished,
although the total loss as the weighted average has reached the
threshold. The adaptively weighted PCNN3 has all individual
losses well balanced and has the highest prediction accuracy. The
PCNN3 also has the least training time among the three PCNNs.
Notice that the computational time for training the PCNNs is much
longer than that for the ANN, because additional information from
physical knowledge is used in the training.
The convergence speeds of the ANN and the adaptively weighted

PCNN3 with respect to the amount of training data are compared in
Fig. 4. It is shown that the required amount of training data to reach a
certain accuracy level of prediction at time t= 1 can be reduced by
adding the physical constraints. Here, the number of physical con-
straints of the PCNN3 is 21 × 6 × 6= 756. The prediction MSEs at
t= 1 of both ANN and PCNN decrease when the training data size
increases. The advantage of PCNN over ANN is obvious when the
training data size is small. When the training data size is less than
400, the prediction accuracy can have nearly one order of magnitude
difference. To reach the same accuracy level of 0.01, the ANN
requires about 900 training data points, whereas the PCNN only
needs about 300 training data points. As the training data size
increases, the difference in prediction accuracy between the ANN
and PCNN gradually reduces.

3.2 Phase Transition Example. As shown in Eq. (13), the
prediction of an MF-PCNN is a combination of the LF-PCNN

Fig. 1 The predicted temperature fields from different models at t=1: (a) original FEM solution, (b) traditional ANN, (c) equally
weighted PCNN1, (d ) unequally weighted PCNN2, and (e) adaptively weighted PCNN3
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prediction and the discrepancy predicted by an ML model (DANN
or GP). First, a low-cost LF-PCNN is trained during the time period
t∈ [0, 1] and then used as the baseline model. In addition, two high-
cost HF-PCNNs (HF-PCNN1 and HF-PCNN2) are constructed. As
shown in Table 2, the HF-PCNN1 is trained with data for the time
period t∈ [0, 0.2], whereas the HF-PCNN2 is trained with the data
for two time periods, t∈ [0, 0.2] and t∈ [0.8, 1]. Then DANNs and
GPs are trained to predict the discrepancy between the LF-PCNN
and HP-PCNN predictions during the time period t ∈ [0, 1]. The
observed discrepancy between the predictions of the LF-PCNN
and HF-PCNN1 during the time period t∈ [0, 0.2] serves as the
training data for the DANN1, DANN2, and GP1. The network
structure of DANN2 is more complex than DANN1. Similarly,
the observed discrepancy between the predictions of the
LF-PCNN and HF-PCNN2 for two time periods, t∈ [0, 0.2] and t

∈ [0.8, 1], serves as the training data for the DANN3, DANN4,
and GP2. Finally, the prediction of the MF-PCNN is the sum of
the LF-PCNN prediction and the predicted discrepancy by
DANNs or GPs. In this example, the mean square of the difference
between the LF simulation and HF simulation is 0.0001 during the
time period t∈ [0, 0.2]. However, since a coarser mesh and larger
time step is used in the LF simulation, errors are accumulated
over time. Then, the mean square of the difference between the
LF simulation and HF simulation becomes 0.0029 during the
time period t∈ [0.8, 1.0]. Therefore, LF simulations are less accu-
rate than HF simulations in the later stage. It is useful to adopt
the MF-PCNN framework to fully utilize the training data with dif-
ferent fidelity.
The predictions of the phase field from different models,

including traditional ANN, LF-PCNN, multi-fidelity models

Fig. 2 The errors of the predicted temperature fields compared with the FEM solution at t=1:
(a) traditional ANN, (b) equally weighted PCNN1, (c) unequally weighted PCNN2, and (d ) adap-
tively weighted PCNN3

Fig. 3 The learning curves for different PCNNs: (a) the equally weighted PCNN1, (b) the unequally weighted PCNN2, and (c) the
adaptively weighted PCNN3
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(combinations of LF-PCNN and DANNs, as well as LF-PCNN and
GPs), at time t= 0.5 are shown in Fig. 5. It is seen that the traditional
ANN has larger prediction errors than PCNNs, especially at the
saddle points where the true values are zeros. Adding physical con-
straints can significantly reduce the prediction errors, as in the
LF-PCNN. At some saddle points, the phase field predicted by
the LF-PCNN is still larger than zero, as shown in Fig. 5(c). Com-
pared with the LF-PCNN, the prediction errors of MF-PCNNs can
be further reduced by adding the discrepancy prediction from
DANNs or GPs. As shown in Figs. 5(d )–5(i), the phase field pre-
dicted by the MF-PCNNs is almost zero at all saddle points. The dif-
ference between the predictions of the LF-PCNN and HF-PCNN
can be captured by DANNs or GPs very well.
The quantitative comparisons of training time and the MSEs

of prediction for different ML models to solve the Allen-Cahn
equation are listed in Table 5, where an MF-PCNN is composed
of an LF-PCNN and an ML model to predict the discrepancy.
For example, MF-PCNN1=LF-PCNN+DANN1 means that the
MF-PCNN1 is a combination of the LF-PCNN and DANN1. The
total training time of an MF-PCNN is the sum of training times
for the LF-PCNN, HF-PCNN, and the discrepancy model (DANN
or GP). The total training time of MF-PCNN1 is 774.32+ 324.37+
79.52= 1178.21 s, where the training times of the LF-PCNN,
HF-PCNN1, and DANN1 are 774.32, 324.37, and 79.52 s, respec-
tively. It is noted that the prediction of the HF-PCNN1 is used for
the training of the MF-PCNN1, MF-PCNN2, and MF-PCNN3,
whereas the prediction of the HF-PCNN2 is used for the training
of the rest of the MF-PCNNs. Therefore, the training times of the
MF-PCNN4, MF-PCNN5, and MF-PCNN6 are longer because of
more training data and physical constraints. It is noted that the train-
ing time of the GP1 is comparable to the DANNs, whereas the train-
ing time of the GP2 is one magnitude longer than the DANNs. The
standard GP is computationally more expensive because the com-
putation of inverse covariance matrices is involved. Therefore,
the standard GP has a cubic time complexity O(n3) [48], whereas
the standard ANN has a linear time complexity O(n), where n

is the number of training data. Nevertheless, the GPs predict not
only mean values but also the associated variances. Therefore,
they are valuable in uncertainty quantification and robust optimiza-
tion [41–43].
TheMSEs of predictions at different time periods for differentML

models are compared in Fig. 6. In general, theMSE of the prediction
increases over time for different ML models. Since the prediction of
the phase field at one-time step relies on the predictions from previ-
ous steps, the error will be accumulated over time. It is also noted that
the time period t∈ [1, 2] is outside the time range t∈ [0, 1] of LF
training data for the LF-PCNN. Therefore, the error for extrapolation
is larger, which is a common issue for most ML models. Neverthe-
less, the MSEs of extrapolation for the LF-PCNN, MF-PCNN1,
MF-PCNN3, MF-PCNN4, and MF-PCNN6 are one order of magni-
tude lower than that of the ANN.
The MSE of prediction from the MF-PCNN1 is significantly

lower than that of the LF-PCNN for t∈ [0, 1]. The difference
between the MSEs, however, decreases for t∈ [1, 2]. Furthermore,
the MSE of prediction at t= 0.5 for the MF-PCNN1 is decreased by
about 50%, compared with that of the LF-PCNN. As for the
MF-PCNN2, its MSE of prediction is higher than that of LF-PCNN
when t > 0.5. The MSE of prediction for the MF-PCNN2 is almost
the same as that of the ANN when t> 0.75. The increased MSE for
the MF-PCNN2 is most likely caused by overfitting since the
DANN2 has more neurons than the DANN1. TheMSE of prediction
for the MF-PCNN3 is slightly lower than that of the LF-PCNN but
higher than that of MF-PCNN1 for t ∈ [0, 2]. Notice that t= 0.5 is
outside the time range t∈ [0, 0.2] of the HF training data for the
HF-PCNN1, and the prediction is based on extrapolation. The
errors indicate that DANN1 is better than GP1 for extrapolation.
With more training data and physical constraints, the HF-PCNN2

has two sampling spaces in the temporal dimension, which are
[0, 0.2] and [0.8, 1]. The observed discrepancy between the predic-
tions of the LF-PCNN and HF-PCNN2 is served as the training
data for the DANN3, DANN4, and GP2. Therefore, the prediction of
the discrepancy between the LF-PCNN and HF-PCNN at t= 0.5 has
become an interpolation problem. Compared with the MF-PCNN1,
the MSE of prediction for the MF-PCNN4 is the lowest among all
ML models for most of the time. With more training data, the
MSE of prediction for the MF-PCNN5 is lower than that of the
MF-PCNN2. However, the MSE of prediction for the MF-PCNN5
becomes higher than that of the MF-PCNN4 when t > 0.25 because
of the overfitting. Compared with the MF-PCNN3, the MSE of
prediction for the MF-PCNN6 is reduced with more training data
when t∈ [0.0, 1.5]. Therefore, the MF-PCNN6 has a lower MSE
of prediction than that of MF-PCNN3 at the cost of longer training
time. However, the MSE of prediction for the MF-PCNN6
becomes the same as that of the LF-PCNN when t > 1.75, indicating
the failure of prediction by GP2.
Among all ML models in this example, the MF-PCNN1 has the

best performance since it has a relatively low training time and very
good accuracy. The good performance of the MF-PCNN1 is mostly
due to the simpler neural network structure of the DANN1.

3.3 Dendritic Growth Example. Here, instead of showing the
complete design optimization procedure for iterative predictions
and searching, we only show the evolutions of dendritic growth pre-
dicted by MF-PCNNs with two different sets of design variables.
For the first design, the liquidus temperature is qe= 1 and latent
heat is K= 2. The predicted phase fields and temperature fields
from FEM and the MF-PCNNs at t= 1.0 are shown in Fig. 7. The
settings for the two MF-PCNNs are compared in Table 3. There
are 51 × 51 sampling points in the 2D domain. For the second
design, the liquidus temperature is qe= 1.4 and the latent heat is
K= 2.8. The predicted phase fields and temperature fields from
FEM and the MF-PCNNs at t= 1.0 are shown in Fig. 8. For both
cases, the predicted shapes of the primary arms from the
MF-PCNNs are similar to the FEM simulation result, whereas the
predicted secondary arms deviate from the simulation. Since

Table 4 Quantitative comparison for different neural networks
to solve the heat equation

Neural
network

Training time
(second)

MSE of prediction
at t= 0

MSE of prediction
at t= 1

ANN 8.66 0.1998 0.0293
PCNN1 1475.40 0.0225 0.0079
PCNN2 1259.91 0.0125 0.0350
PCNN3 1019.07 0.0139 0.0055

Fig. 4 Convergence analysis for the ANN and the PCNN3
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secondary arms contain very thin and delicate features, more train-
ing data or physical constraints are needed to predict the secondary
arms more accurately. The number of neurons also needs to be
increased. For both dendrites, the predicted temperature fields
from the MF-PCNNs correspond to the FEM simulation result
very well, given that gradients in the temperature field are smaller
than the phase field. The MSEs of prediction from the MF-PCNN
for dendritic growth at t= 1.0 are shown in Table 6. It is shown

that the MSE of prediction for the phase field is at least one order
of magnitude larger than that for the temperature field in both
cases. Compared with the MF-PCNN1, the MF-PCNN2 has more
physical constraints. Therefore, the MSE of prediction for phase
field from the MF-PCNN2 is lower than that from the MF-PCNN1.
In future work, the architecture of MF-PCNNs needs to be opti-
mized for such multiphysics examples, which will be largely deter-
mined by the resolutions of predicted fields.

Fig. 5 The predicted phase fields from different models at t=0.5

Table 5 Quantitative comparison between different ML models in the phase transition example

ML model Training time (second) MSE of prediction at t= 0.5 MSE of prediction at t= 1.5

ANN 7.93 0.2215 0.8866
LF-PCNN 774.32 0.0258 0.0684
MF-PCNN1=LF-PCNN+DANN1 774.32+ 324.37+ 79.52= 1178.21 0.0133 0.0521
MF-PCNN2=LF-PCNN+DANN2 774.32+ 324.37+ 25.19= 1123.88 0.0753 0.8508
MF-PCNN3=LF-PCNN+GP1 774.32+ 324.37+ 62.58= 1161.27 0.0218 0.0587
MF-PCNN4=LF-PCNN+DANN3 774.32+ 3095.68+ 100.38= 3970.38 0.0114 0.0399
MF-PCNN5=LF-PCNN+DANN4 774.32+ 3095.68+ 58.01= 3928.01 0.0173 0.1926
MF-PCNN6=LF-PCNN+GP2 774.32+ 3095.68+ 1498.41= 5368.41 0.0129 0.0648
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4 Discussion and Conclusions
In this work, a new scheme of multi-fidelity physics-constrained

neural networks is proposed to improve the efficiency of training in
neural networks by reducing the required amount of training data
and incorporating physical knowledge as constraints. Neural net-
works with two (or more) levels of fidelities are combined to
improve the prediction accuracy. Low-fidelity networks predict
the general trend, whereas high-fidelity networks model local
details and fluctuations. For the concern of training cost, low-
fidelity networks can be trained with low-fidelity data, and the
prediction accuracy can be further improved with supplementary
high-fidelity data. Thus, the training efficiency is improved from
two aspects. The first one is the guidance from the physical knowl-
edge, and the second one is a more cost-effective data collection and
sampling strategy.
In engineering and physical sciences, the knowledge about the

system behaviors is typically described by PDEs as well as the asso-
ciated initial and boundary condition information. The physical

knowledge can be easily added as the regularization terms into
the total loss functions in neural networks. The physical constraints
then can help reduce the searching space and guide the searching
direction during the training. When new knowledge about the
system is obtained, more physical constraints can be added into
PCNNs to improve the prediction accuracy. Thus, the LF-PCNN
and HF-PCNN to construct an MF-PCNN can be trained with dif-
ferent sets of constraints. It is reasonable to assume that the informa-
tion of constraints can be obtained efficiently by the evaluation of
analytical functions, which is less costly than obtaining simulation
data for the training. The proposed formulation is generic and can
be extended to other machine learning approaches, where regulari-
zation can be similarly applied.
The proposed scheme is demonstrated with three examples of

materials modeling. The first example is the heat equation with
zero Neumann boundary conditions, which is a linear PDE. The
second example is the Allen-Cahn equation with periodic boundary
condition, which is a nonlinear PDE. The PCNN is effective for
these two different types of PDEs with different boundary condi-
tions. The third example is the dendritic growth during solidification
where heat transfer and phase transition are coupled. The classical
ANN with small training data sets tends to have large prediction
errors. By adding physical constraints, the prediction accuracy of
the PCNN can be one order of magnitude higher than the one
from the classical ANN. Even with limited training data, the predic-
tion of the PCNN is comparable with the original FEM solution.
The weights associated with physical constraints can be adjusted
to reflect the importance of prior knowledge. They also affect pre-
diction accuracy. It is demonstrated that the adaptive weighting
scheme results in higher prediction accuracy and shorter training
time because the different losses in the total cost function are well
balanced and have a similar convergence speed. The convergence
analysis shows that the required amount of training data can be
reduced by adding more physical constraints. Based on the compu-
tational results, DANNs are more robust than GPs for extrapolation
to predict the discrepancy between the LF-PCNN and HF-PCNN.
The results in this paper have demonstrated the effectiveness of the

proposed MF-PCNN framework for simulation prediction. Ideally,
to construct the process-structure-property relationship using ML

Fig. 6 The change of MSE of prediction for different ML models

Fig. 7 The predicted phase fields and temperature fields from different models for the first material option (qe=1; K=2) at t=1.0.
Phase fields are shown in (a), (c), and (e). Temperature fields are shown in (b), (d ), and ( f ).
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tools, the design variables should be directly incorporated as the
input vector. This pure black-box approach, however, increases the
complexity of ML tools and needs a significant amount of training
data. The purpose of the proposed MF-PCNN framework is to
reduce the required amount of training data by taking a gray-box
approach. Although the offline training of MF-PCNN is slow,
which takes up to several hours, its online evaluation or forward pre-
diction can be done in a few seconds, once the training is finished.
It was also shown that the training efficiency can be improved
if the training data are from numerical simulations with different
fidelities. The training data, however, are not limited to numerical
simulation results only. They can also come from experimental mea-
surements. The costs of experimental measurements can also be
incorporated into the multi-fidelity scheme, where cost-effective
sampling strategies can be taken.
Future work will include several extensions. First, the complete

framework of PCNN-based design optimization will be imple-
mented and evaluated. Second, although classical ANN is a good
baseline model to demonstrate the proposed MF-PCNN framework,
the ANN could be replaced by the recurrent neural networks, such
as long short-term memory neural networks, which may be more
appropriate to solve time-dependent problems. Third, the adaptive
weighting scheme is training data-dependent. Therefore, it is possi-
ble to further optimize the adaptive weighting scheme based on the

training data. The architecture of MF-PCNNs can also be optimized
for efficiency improvement by training the LF-PCNN and DANN
together. Fourth, to further improve the training efficiency, a
sequential sampling strategy can be adopted to obtain an optimal
combination of the HF and LF sample points for a given computa-
tional budget [42]. Finally, a more rigorous and comprehensive
comparison of the scalability between the proposed MF-PCNN
and multi-fidelity GP models is needed. Theoretically, the standard
GP has a cubic time complexity, whereas the standard ANN has a
linear time complexity. However, incorporating the computational
cost of data sampling in the multi-fidelity simulation scenario will
provide an overall scalability picture in terms of training and predic-
tion time.
The proposed scheme should not be regarded as the replacement

of classical numerical simulation methods (e.g., finite-element
and spectral methods) for solving partial differential equations.
Rather, it enhances the efficiency of engineering design when high-
fidelity simulations need to be run repetitively to obtain samples for
design optimization. The required number of samples for optimiza-
tion for high-dimensional problems usually is very large. The cost
of training machine learning tools, therefore, can only be justified
for complex problems with a high-dimensional searching space.
For high-dimensional problems, the physical constraints can still
be applied in the same scheme. However, as the number of con-
straints increases, they may not be treated as equally important,
and those with trivial weights will be removed. In principle, as
the dimension of the problem increases, the advantage of PCNNs
will become more prominent because the required amount of train-
ing data can be reduced more significantly. The proposed scheme
has the potential of making machine learning useful for real-world
engineering applications where data sparsity is a common issue.
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Fig. 8 The predicted phase fields and temperature fields from different models for the secondmaterial option (qe=1.4; K=2.8) at t
=1.0. Phase fields are shown in (a), (c), and (e). Temperature fields are shown in (b), (d ), and (f ).

Table 6 MSEs of prediction from the MF-PCNN for dendritic
growth at t=1.0

Training
time

(second)

MSE of
prediction
for phase
field

MSE of
prediction for
temperature

field

Dendrite 1 MF-PCNN1 4320.18 0.0356 0.0047
MF-PCNN2 8738.51 0.0346 0.0049

Dendrite 2 MF-PCNN1 37,836.12 0.1127 0.0010
MF-PCNN2 154,791.97 0.0713 0.00384
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