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ABSTRACT 
Training machine learning tools such as neural networks 

requires the availability of sizable data, which can be difficult 
for engineering and scientific applications where experiments or 
simulations are expensive. In this work, a novel multi-fidelity 
physics-constrained neural network is proposed to reduce the 
required amount of training data, where physical knowledge is 
applied to constrain neural networks, and multi-fidelity networks 
are constructed to improve training efficiency. A low-cost low-
fidelity physics-constrained neural network is used as the 
baseline model, whereas a limited amount of data from a high-
fidelity simulation is used to train a second neural network to 
predict the difference between the two models. The proposed 
framework is demonstrated with two-dimensional heat transfer 
and phase transition problems, which are fundamental in 
materials modeling. Physics is described by partial differential 
equations. With the same set of training data, the prediction error 
of physics-constrained neural network can be one order of 
magnitude lower than that of a classical artificial neural network 
without physical constraints. The accuracy of the prediction is 
comparable to those from direct numerical solutions of 
equations.  
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1. INTRODUCTION 

Machine learning (ML) tools, exemplified by the 
convolutional neural network and its derivatives, have 
demonstrated success in diverse fields. However, they are very 
data-hungry during training and can easily fail in applications 
where data are scarce and expensive to collect. The root cause is 
the “curse of dimensionality” in training the ML tools. As ML 
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tools need to capture more detailed patterns or sensitive features, 
more complex modeling structures need to be introduced with 
more parameters and degrees of freedom. As a result, training 
algorithms need to explore and exploit in a very high-
dimensional parameter space to search for optimal parameters. 
When the dimension increases, the volume of parameter spaces 
increases exponentially, so does the required amount of training 
data to cover the space and ensure the convergence of training. 
When the size of the training data set is small, overfitting can 
occur. That is, the training results in a spurious relationship that 
looks deceptively good but has low generality outside the labeled 
data range.  

In various engineering and scientific applications, the cost 
of obtaining a large amount of data from high-fidelity 
simulations or experiments can be prohibitive. Data sparsity is 
not helpful to construct meaningful predictive ML models. 
Therefore, it is still a challenge for current state-of-the-art ML 
techniques to be applied in the domains of engineering or 
physical sciences. In the engineering domain, establishing high-
dimensional process-structure-property relationships for either 
product or process design is the essential task. In engineering and 
scientific communities, human intelligence or knowledge has 
been embodied as physical laws or models based on centuries of 
data and knowledge accumulation. Giving up the available 
physical knowledge and purely relying on data-driven ML tools 
to identify the cause-effect relationships in physical sciences and 
engineering can be regarded as reinventing the wheel. 
Nevertheless, ML provides tools for systematic searching and 
exploring nonlinear and nonconvex relationships, which is much 
more efficient than ad hoc discovery. It is believed that training 
ML tools based on prior knowledge of physics can help navigate 
the high-dimensional parameter space with a small amount of 
training data.  
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It is envisioned that the efficiency of training ML tools under 
the constraint of physical knowledge can be improved with small 
sample sizes. The physical laws or models can guide the 
searching and optimization procedures [1]. Generally, many 
physical laws are mathematically described as the relationships 
between physical quantities in the forms of ordinary differential 
equations (ODEs) or partial differential equations (PDEs). Some 
important and useful physical laws include but are not limited to 
conservation laws, laws of classical mechanics and 
thermodynamics. These physical laws have become the 
milestones of knowledge discovery in various scientific and 
engineering domains. Based upon physical laws or principles, 
various physics-based modeling and simulation techniques have 
been proposed to predict the behaviors of physical systems.  

Incorporating physical meanings and physical knowledge in 
artificial neural networks (ANNs) has been studied from 
different perspectives. The first approach is to customize ANNs 
and incorporate physical meanings in the architecture. It has been 
demonstrated that ANN models can be applied to solve some 
special forms of optimization. For example, quadratic 
programming problems can be converted to linear 
complementarity problems and solved iteratively by projection 
neural networks [2,3]. Some efforts have been made for 
incorporating prior knowledge into ANNs in order to improve 
the training efficiency or prediction accuracy. Here, training 
efficiency means the convergence speed. For instance, prior 
knowledge can be applied as preprocessing tools to filter training 
data [4,5], or embedded as some analytical input-output 
functions in additional layers of ANNs [6], to improve the 
training efficiency. Prior knowledge can also be expressed as 
rules and interpreted with weights and basis functions in the 
ANN architecture, which could be further refined using training 
data [7,8]. Similarly, finite-element neural networks (FENNs) 
[9,10] can be constructed by transforming a finite element model 
to a neural network, where the weights of a FENN have physical 
meanings of material properties and can be computed in advance 
without training. FENNs have been used to obtain the solutions 
of differential equations for both forward and inverse problems. 
The major challenge of incorporating physical meanings into the 
ANN architecture is the complexity of customized networks. For 
instance, the number of weights in FENNs is related to the 
number of nodes, which could be very large for some high-
dimensional problems with complex geometry. 

The second approach to incorporate physical knowledge is 
treating it as constraints so that they can guide the training 
process. For instance, prior knowledge can be embedded into 
ANNs as architectural constraints and connection weight 
constraints to improve the training efficiency [11]. In addition to 
functional values, the information of derivatives has also been 
incorporated as prior knowledge for support vector regression 
[12]. ANNs have been used to approximate the solutions of 
PDEs. By transforming the original PDEs into their weighted 
residual forms, the prior knowledge of model forms and 
boundary values can be incorporated as penalty functions during 
the training of ANNs [13]. Similarly, the original model forms 
and boundary conditions, rather than their weighted residual 

forms, can be directly embedded as regularization terms into the 
objective function during the training process [14]. A 
regularization parameter has been introduced to control the 
trade-off between data fitting and knowledge-based 
regularization [15]. It has been shown that regularized ANNs 
such as multi-layer perceptron (MLP) and radial basis function 
(RBF) neural networks can help obtain the solutions of ODEs 
and PDEs with higher accuracy and lower memory requirement 
than traditional numerical methods [16]. The initial and 
boundary conditions can also be incorporated as the 
regularization terms to improve the efficiency of ANN training. 
For instance, a trial solution is formulated such that it contains 
the information of both boundary conditions and the model form 
[17,18].  However, it may be difficult to find trial solutions for 
boundary value problems that are defined on irregular 
boundaries. To tackle this problem, a MLP-RBF synergy model 
[19] was further proposed, where the first part of the trial solution 
was replaced by the RBF neural network so that the boundary 
conditions on irregular boundaries can be satisfied. Another way 
to handle arbitrary irregular boundaries is introducing a length 
factor [20] into the second part of the trial solution. As a measure 
of distance from the boundary, the length factor returns zero on 
the boundary and nonzero inside the boundary so that the first 
part of the trial solution is unaffected. Similarly, regularized 
ANNs were applied to approximate the solutions of ODEs [21], 
and a comparison was conducted between the performance of 
four different ANNs to solve ODEs [22]. Instead of 
regularization, information about boundary conditions can be 
explicitly used as equality constraints between the weights in 
ANNs such that a constrained backpropagation training can be 
taken [23–25]. The effectiveness of regularization during the ML 
training has been demonstrated in the above work. However, the 
training efficiency is still limited in high-dimensional problems, 
where the sampling of solutions from PDEs or ODEs can be 
costly. 

In this paper, a multi-fidelity framework for the physics-
constrained neural network (PCNN) is proposed to help 
construct high-dimensional surrogate models more efficiently. 
Here, PCNNs are constructed to approximate and predict the 
solutions of PDEs. Some solutions from simulations serve as the 
training data. The prior knowledge of PDEs, as well as the initial 
and boundary conditions, are applied to guide the training 
process of PCNNs with reduced searching space. The multi-
fidelity concept is introduced to further reduce the required 
amount of training data. By combining a low-fidelity physics-
constrained neural network (LF-PCNN) and a high-fidelity 
physics-constrained neural network (HF-PCNN), a multi-fidelity 
physics-constrained neural network (MF-PCNN) can be created 
with a lower training cost and higher prediction accuracy. The 
LF-PCNN is trained with low-fidelity simulation results, 
whereas the HF-PCNN is trained from high-fidelity simulations. 
The MF-PCNN is constructed by combining the predictions 
from the LF-PCNN and the difference between the LF-PCNN 
and HF-PCNN predictions. The advantage of the MF-PCNN is 
that the overall amount of training data can be reduced in order 
to achieve the similar level of accuracy by using the HF-PCNN 
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alone. In this paper, two examples are used to demonstrate the 
efficiency of the MF-PCNN framework. One example is the 
prediction of the temperature field in a heat transfer problem, and 
the other is the prediction of the phase field in a phase transition. 
It is shown that a MF-PCNN can be constructed with very 
limited simulation data to achieve a good accuracy of prediction. 

In the remainder of this paper, the training of PCNNs, the 
construction of MF-PCNNs, and the setup of the computational 
scheme are described in Section 2. The computational results of 
the examples are shown in Section 3. 

 
2. METHODOLOGY 

In MF-PCNNs, the training data for LF-PCNNs and HF-
PCNNs can be obtained from the analytical or numerical 
solutions of PDEs, e.g. from finite-element method (FEM). 
During the training, the prior knowledge about the form of PDEs 
or boundary values is added as the regularization terms in the 
loss function. The knowledge constraints provide guidance to the 
searching direction for optimization. The MF-PCNN is 
constructed based on the information from the LF-PCNN as well 
as the additional information that the HF-PCNN provides. The 
cost of obtaining high-fidelity information is higher than that of 
low-fidelity one. Therefore, the allocation of computational 
resources between high- and low-fidelity simulations can help 
reduce the overall training cost.  

 
2.1 Training of PCNNs 

Generally, a wide range of physical phenomena and 
dynamics can be described by PDEs, including heat transfer, 
advection-diffusion process, fluid dynamics, and others. Let us 
consider a time-dependent parametrized PDE with the general 
form  

 𝑃 ቀ𝑢, డ௨

డ௧
, డ௨

డ𝐱
, డమ௨

డ௧మ , డమ௨

డ𝐱మ , … ቁ ൌ 𝑓ሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝐱 ∈ Ω, (1) 

where 𝑢ሺ𝑡, 𝐱ሻ is the hidden solution to be found, 𝑓ሺ𝑡, 𝐱ሻ is a 
source or sink term, 𝑡 is the time, 𝐱 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ሻ is the 
spatial vector, and Ω ∈ ℝ denotes the definition domain. This 
general PDE is subject to initial conditions (ICs) 
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and boundary conditions (BCs) 
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where ∂Ω is the boundary of the definition domain. A more 
compact form of the above initial-boundary value problem can 
be written as 
 𝐃ሾ𝑢ሺ𝑡, 𝐱ሻሿ ൌ 𝑓ሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝐱 ∈ Ω, (4) 
 𝚲ሾ𝑢ሺ0, 𝐱ሻሿ ൌ 𝑔ሺ𝐱ሻ, 𝑡 ൌ 0, 𝐱 ∈ Ω, (5) 
 𝚪ሾ𝑢ሺ𝑡, 𝐱ሻሿ ൌ ℎሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝐱 ∈ ∂Ω, (6) 
where 𝐃ሾ∙ሿ , 𝚲ሾ∙ሿ , and 𝚪ሾ∙ሿ  are differential operators. For 
example, the three-dimensional (3D) heat equation without the 
source term corresponds to 𝐃ሾ𝑢ሺ𝑡, 𝐱ሻሿ ൌ 𝑢௧ െ 𝛼൫𝑢௫௫  𝑢௬௬ 
𝑢௭௭൯ ൌ 0, where α is the thermal diffusivity, and the subscripts 
represent the partial derivatives with respect to either time or 
space. 

In this work, the MLP architecture is used as a 
demonstration, which includes one input layer for ሺ𝑡, 𝐱ሻ , 
multiple hidden layers, and one output layer for 𝑈ሺ𝑡, 𝐱ሻ  to 
approximate the true solution 𝑢ሺ𝑡, 𝐱ሻ . The neurons are 
connected with those in the neighbor layers, and the weights 
represent the strength of connections. The output from the hidden 
layer to the following layer is calculated as 
 𝑦𝒊 ൌ 𝜑൫∑ 𝑤𝜃  𝑏൯, (7) 
where 𝑤 is the weight of the connection between neuron j in 
the previous layer and neuron i in the current layer, 𝜃 is the j-
th input value from the previous layer, and 𝑏 is the bias for the 
neuron i in the current layer. 𝜑  is a nonlinear activation 
function, which can be sigmoid, tanh, rectified linear unit, or 
others. 

The weights of a PCNN can be learned by minimizing the 
mean squared loss or total cost function 
 𝐸 ൌ 𝜆்𝐸்  𝜆𝐸  𝜆ூ𝐸ூ  𝜆௦𝐸௦, (8) 
where  
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is the loss caused by the discrepancy between the training data 

𝑇ሺ∙ሻ and the PCNN model prediction 𝑈ሺ∙ሻ, ቄ𝑡
ሺ∙ሻ, 𝐱

ሺ∙ሻቅ denotes 

the sampling points in the defined domain, and 𝑁ሺ∙ሻ denotes the 
number of sampling points. Similarly, 
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are the losses caused by the violations of the model, initial 
conditions, and boundary conditions as the physical constraints 
from Eqs. (4)-(6). The constraint on weights of different losses 
is given as 
 𝜆்  𝜆  𝜆ூ  𝜆௦ ൌ 1. (9) 
The relative importance of prior knowledge can be adjusted by 
changing the weights of physical constraints 𝜆, 𝜆ூ and 𝜆ௌ. If 
the total loss function only includes the training loss 𝐸், then 
this is the traditional pure data-driven ANN to solve the initial-
boundary value problem.  By adding physical losses 𝐸 , 𝐸ூ 
and 𝐸ௌ  as the regularization terms, the prior physical 
knowledge can help to reduce the size of searching space and 
provide guidance for the searching directions in training. 

 
2.2 Construction of MF-PCNNs 

The LF-PCNN and HF-PCNN must be trained first before 
the MF-PCNN is constructed. In this work, the fidelities are 
determined by the resolutions of FEM simulations given the 
same density of physical constraints. To be more specific, low-
fidelity simulations are used to construct the LF-PCNN during a 
long time period  𝑡 ∈ ሾ0, 𝑇ሿ , whereas high-resolution 
simulations are applied for the HF-PCNN during a short time 
period 𝑡 ∈ ሾ0, 𝑇ሿ ሺ𝑇 ൏ 𝑇ሻ. 
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After the LF-PCNN and HF-PCNN are trained, the 
difference between the predictions of the LF-PCNN 𝑈ሺ𝑡, 𝐱ሻ 
and HF-PCNN 𝑈ுሺ𝑡, 𝐱ሻ is calculated as 
 𝛿ሺ𝑡, 𝐱ሻ ൌ 𝑈ுሺ𝑡, 𝐱ሻ െ 𝑈ሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝐱 ∈ Ω. (10) 
Then another ANN called difference artificial neural network 
(DANN) is constructed to predict the difference between the LF-
PCNN and HF-PCNN, denoted as 𝑈ఋሺ𝑡, 𝐱ሻ, during a longer time 
period 𝑡 ∈ ሾ0, 𝑇ሿ. The weights of the DANN can be learned by 
using the observed difference 𝛿ሺ𝑡, 𝐱ሻ  as the training data to 
minimize the mean squared error loss 
𝐸ఋ ൌ ଵ

ேഃ
∑ |𝑈ఋሺ𝑡, 𝒙ሻ െ 𝛿ሺ𝑡, 𝒙ሻ|ଶேഃ

ୀଵ , 𝑡 ∈ ሾ0, 𝑇ሿ, 𝒙 ∈ Ω, (11) 

where 𝑁ఋ is the number of sampling points for the DANN. It is 
assumed that the evolution of the difference between the LF-
PCNN and HF-PCNN during a longer time period 𝑡 ∈ ሾ0, 𝑇ሿ 
can be predicted by the DANN using the observed difference 
𝛿ሺ𝑡, 𝐱ሻ  as the training data during the short time period 𝑡 ∈
ሾ0, 𝑇ሿ. Then the MF-PCNN is a combination of the LF-PCNN 
and DANN. The prediction from the MF-PCNN during the time 
period 𝑡 ∈ ሾ0, 𝑇ሿ is given by 
 𝑈ெሺ𝑡, 𝐱ሻ ൌ 𝑈ሺ𝑡, 𝐱ሻ  𝑈ఋሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝐱 ∈ Ω. (12) 

 
2.3 Experimental setup of the proposed MF-PCNN 

The construction and training of the MF-PCNN are 
accomplished by using Tensorflow [26], which is an open-source 
Python library for machine learning. The partial derivatives of 
the ANNs are calculated based on the chain rules using the 
automatic differentiation [27]. Automatic differentiation is 
different from the numerical differentiation such as the method 
of finite difference. By applying the chain rules repeatedly, the 
derivatives of arbitrary order can be computed automatically and 
accurately to a working precision.  

Two examples are applied to demonstrate the proposed MF-
PCNN framework. The first example is a heat transfer problem 
where the evolution of the two-dimensional (2D) temperature 
distribution is modeled with the heat equation. The heat transfer 
example is used to demonstrate the effectiveness of the PCNN 
and test different weighting schemes of the total loss function. 
The second example is the phase transition problem where the 
evolution of the 2D phase field is modeled with the Allen-Cahn 
equation. The phase transition example is utilized to demonstrate 
the efficiency of the MF-PCNN framework. 

The details of the computational setup for different ML 
models in the heat transfer and the phase transition examples are 
listed in TABLE 1 and TABLE 2, respectively. The ANNs, LF-
PCNNs, and HF-PCNNs have the same structure of 30-20-30-
20. That is, each of the networks has 4 layers. There are 30 
neurons in the first and third layer, and 20 neurons in the second 

and last layer. The structures of the DANNs are simpler to avoid 
overfitting, which are 5-5-5-5 and 10-10-10-10. Two Gaussian 
process (GP) surrogate models with the RBF kernel are also 
constructed to predict the difference between the LF-PCNN and 
HF-PCNN for comparison purpose. The tanh function is used as 
the activation function. All of the loss functions of neural 
networks are minimized by using a gradient-based optimization 
algorithm called Adam [28] for the consideration of efficiency.  

The training data for the ANNs, LF-PCNNs, and HF-
PCNNs come from the FEM solutions of COMSOL, whereas the 
training data for the DANNs and GPs come from the observed 
differences between the predictions of the LF-PCNNs and HF-
PCNNs during the short time period 𝑡 ∈ ሾ0, 𝑇ሿ. The sampling 
strategy is uniform in both temporal and spatial dimensions for 
the convenience of comparison with the FEM solutions. Other 
sampling strategies such as random sampling, orthogonal 
sampling, and Latin Hypercube sampling can also be adopted. 

TABLE 1 and TABLE 2 list the sizes of training data sets 
for the heat transfer and phase transition examples respectively. 
For instance, the amount of training data for the ANNs is 
21×6×6, which means that there are 21 sampling points in the 
temporal dimension, 6 sampling points in the x direction of the 
spatial domain, and 6 sampling points in the y direction of the 
spatial domain. For the PCNNs in the heat transfer example, the 
number of physical constraints is 41×11×11. That is, there are 41 
sampling points in the temporal dimension, 11 sampling points 
in the x direction and 11 sampling points in the y dimension of 
the spatial domain. The time period represents the size of the 
sampling space in the temporal dimension. In the heat transfer 
example, three different weighting schemes (PCNN1, PCNN2, 
and PCNN3) are compared. In the phase transition example, two 
HF-PCNNs (HF-PCNN1 and HF-PCNN2) are trained. The HF-
PCNN1 is trained during the time period 𝑡 ∈ ሾ0, 0.2ሿ, whereas 
the HF-PCNN2 is trained during two time periods, 𝑡 ∈ ሾ0, 0.2ሿ 
and 𝑡 ∈ ሾ0.8, 1ሿ. Therefore, the amount of training data and the 
number of physical constraints for the HF-PCNN2 are twice 
those of the HF-PCNN1. The observed difference between the 
predictions of the LF-PCNN and HF-PCNN1 is served as the 
training data for the DANN1, DANN2, and GP1. Similarly, the 
observed difference between the predictions of the LF-PCNN 
and HF-PCNN2 is served as the training data for the DANN3, 
DANN4, and GP2. For ANNs, LF-PCNNs, and HF-PCNNs, the 
training of a neural network stops when the total loss E is lower 
than a threshold value 0.01. Similarly, the training of a DANN 
stops when the loss function 𝐸ఋ is below 0.01. 

 

 

TABLE 1: The setup for different ML models in the heat transfer example 

ML model Structure 
Amount of training 

data (t×x×y)
Number of physical 
constraints (t×x×y) 

Time period/s 

ANN 30-20-30-20 21×6×6 0 [0, 1] 
PCNN1, PCNN2, PCNN3 30-20-30-20 21×6×6 41×11×11 [0, 1] 
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TABLE 2: The setup for different ML models in the phase transition example 

ML model Structure 
Amount of training 

data (t×x×y)
Number of physical 
constraints (t×x×y) 

Time period/s 

ANN 30-20-30-20 21×6×6 0 [0, 1] 
LF-PCNN 30-20-30-20 21×6×6 21×11×11 [0, 1] 

HF-PCNN1 30-20-30-20 9×21×21 5×11×11 [0, 0.2] 
HF-PCNN2 30-20-30-20 18×21×21 10×11×11 [0, 0.2], [0.8, 1] 

DANN1 5-5-5-5 9×26×26 0 [0, 0.2] 
DANN2 10-10-10-10 9×26×26 0 [0, 0.2] 
DANN3 5-5-5-5 18×26×26 0 [0, 0.2], [0.8, 1] 
DANN4 10-10-10-10 18×26×26 0 [0, 0.2], [0.8, 1] 

GP1 RBF kernel 9×26×26 0 [0, 0.2] 
GP2 RBF kernel 18×26×26 0 [0, 0.2], [0.8, 1] 

3. EXPERIMENTAL RESULTS 
In this section, the results for the heat transfer and phase 

transition examples are shown. The heat transfer example is used 
to demonstrate the effectiveness of the PCNN and test different 
weighting schemes of the total loss function. A convergence 
analysis for the ANN and the PCNN is also conducted. The phase 
transition problem is to demonstrate the efficiency of the MF-
PCNN framework. 

 
3.1 Heat equation 

The evolution of temperature distributions can be modeled 
by parabolic PDEs. The heat equation describes the diffusion 
process of energy, which is important in modeling 
microstructure evolution during phase transition. The 2D heat 
equation with the zero Neumann boundary condition used in this 
example is 

 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑢௧ െ 0.01൫𝑢௫௫  𝑢௬௬൯ ൌ 0,   𝑡, 𝑥, 𝑦 ∈ ሾ0,1ሿ,

𝑢ሺ0, 𝑥, 𝑦ሻ ൌ 0.5ሾ𝑠𝑖𝑛ሺ4𝜋𝑥ሻ  𝑠𝑖𝑛ሺ4𝜋𝑦ሻሿ,
𝑢௫ሺ𝑡, 0, 𝑦ሻ ൌ 0,    
𝑢௫ሺ𝑡, 1, 𝑦ሻ ൌ 0,   
𝑢௬ሺ𝑡, 𝑥, 0ሻ ൌ 0,
𝑢௬ሺ𝑡, 𝑥, 1ሻ ൌ 0.

, (13) 

where u is the 2D temperature field. 
The goal of training a neural network is to ensure the 

prediction 𝑈ሺ𝑡, 𝑥, 𝑦ሻ from the neural network can approximate 
the true solution 𝑢ሺ𝑡, 𝑥, 𝑦ሻ  from FEM simulations with the 
desired accuracy. Here, the physical loss is 
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, 𝑦
ሻ

ቮ

ଶ

ேು
ୀଵ . (14) 

The initial loss is given by 
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The boundary loss is 
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ୀଵ . (16) 

To assess the sensitivity of weights, three weighting 
schemes of the total loss function are tested and compared with 
each other. In the PCNN1, the weights are equal and fixed in the 
total loss function 
 𝐸 ൌ 0.25ሺ𝐸்  𝐸  𝐸ூ  𝐸௦ሻ. (17) 
In the PCNN2, the weights are unequal and fixed in the total loss 
function 
 𝐸 ൌ 0.125ሺ𝐸்  2𝐸  4𝐸ூ  𝐸௦ሻ. (18) 
In the PCNN3, the weights are adaptive during the training, 
which are proportional to the percentages of individual losses in 
the total loss function 

 𝐸 ൌ
ா

మାாು
మାா

మାாೄ
మ

ாାாುାாାாೞ
. (19) 

Assigning higher weights to the physical constraints indicates 
that prior knowledge will be more influential in the training 
process. When the training data is sparse, increasing the number 
of physical constraints can help improve the training efficiency. 
In addition, the weights of physical constraints need to be large 
enough in order to ensure the training efficiency and prediction 
accuracy. When the weights of physical constraints are assigned, 
it is also necessary to consider the balance among different losses 
such that the reduction speeds of the four errors are comparable. 
The ideal case is that the four losses are reduced at the same 
speed so that the overall reduction speed of the total loss is 
maximized. 

Here, the training data come from the FEM solutions. 
FIGURE 1 shows the original FEM solution of the temperature 
field, as well as the predictions by the traditional ANN, the 
equally-weighted PCNN1, the unequally-weighted PCNN2, and 
the adaptively-weighted PCNN3 at t = 1, respectively. The errors 
of the predicted temperature fields compared with the original 
FEM solution for different neural networks at t = 1 are shown in 
FIGURE 2. Here, the prediction error is the absolute difference 
between the prediction from a neural network and the FEM 
solution. The dots in the figures indicate the evaluation points. 
There are 26×26 evaluation points in the 2D domain. It is seen  
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  (a)      (b)      (c) 

   
         (d)         (e) 

FIGURE 1: The predicted temperature fields from different models at t = 1: (a) original FEM solution, (b) traditional ANN, (c) 
equally-weighted PCNN1, (d) unequally-weighted PCNN2, and (e) adaptively-weighted PCNN3. 

 

   
         (a)         (b) 

   
         (c)         (d) 

FIGURE 2: The errors of the predicted temperature fields compared to the FEM solution at t = 1: (a) traditional ANN, (b) equally-
weighted PCNN1, (c) unequally-weighted PCNN2, and (d) adaptively-weighted PCNN3. 
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  (a)      (b)      (c) 
FIGURE 3: The learning curves for different PCNNs: (a) the equally-weighted PCNN1, (b) the unequally-weighted PCNN2, and (c) 

the adaptively-weighted PCNN3. 
 
that the prediction from the ANN is less accurate than the three 
PCNNs, because of the small training data set. The error is 
especially large in the area around saddle points. Notice that the 
training data for the ANN and PCNNs come from the same LF 
simulations. With physical constraints added as regularization 
terms, the prediction errors of the PCNNs are reduced 
significantly. 

The learning curves for different PCNNs are shown in 
FIGURE 3. For the three different PCNNs, all losses 
monotonically decrease during the training. However, the 
difference between the convergence speeds of individual losses 
varies with the different weighting schemes. For the equally-
weighted PCNN1, as shown in FIGURE 3(a), the initial loss is 
one order of magnitude larger than the boundary loss, meaning 
that the difference between the convergence speeds of individual 
losses is large. Therefore, it takes a longer time for the PCNN1 
to converge. For the unequally-weighted PCNN2, the weights of 
physical constraints are higher in order to increase the influence 
of prior knowledge. As a result, the different losses are within the 
same order of magnitude, as shown in FIGURE 3(b). As for the 
adaptively-weighted PCNN3, the weights are dynamically 
adjusted based on the percentages of individual losses in the total 
loss function. As shown in FIGURE 3(c), the different losses 
converged at the same speed and are well-balanced. The training 
time is the shortest among the three cases. 

The quantitative comparison of training time and the mean 
squared error (MSE) of prediction for four neural networks is 
listed in TABLE 3. All MSEs of prediction for the PCNN1 and 
PCNN3 are almost one order of magnitude lower than that for 
the ANN. As a result of stronger enforcement for the physical 
constraints, the prediction accuracy of the PCNN2 is higher than 
that of the PCNN1 at t = 0. However, the MSE of prediction at t 
= 1 for the PCNN2 is larger than that of the PCNN1. This could 
be caused by the in-balance between different losses in the 
PCNN2. As shown in FIGURE 3(b), the training loss is still 
larger than the threshold value 0.01 when the training is finished, 
although the total loss as the weighted average has reached the 
threshold. The adaptively-weighted PCNN3 has all individual 
losses well-balanced and has the highest prediction accuracy. 

The PCNN3 also has the least training time among the three 
PCNNs. Notice that the computational time for training the 
PCNNs is much longer than that for the ANN, because additional 
information from physical knowledge is used in the training. In 
engineering applications, simulations, especially high-fidelity 
ones, are computationally expensive. Therefore, the simulation 
results as the training data are sparse. However, prior knowledge 
can be obtained without expensive computation, which can be 
regarded as the supplemental data for training. 

The convergence speeds of the ANN and the adaptively-
weighted PCNN3 with respect to the amount of training data are 
compared in FIGURE 4. It is shown that the required amount of 
training data to reach certain accuracy level of prediction at time 
t = 1 can be reduced by adding physical constraints. Here, the 
number of physical constraints of the PCNN3 is 21×6×6 = 756. 
The prediction MSEs at t = 1 of both ANN and PCNN decrease 
when the training data size increases. The advantage of PCNN 
over ANN is obvious when the training data size is small. When 
the training data size is less than 400, the prediction accuracy can 
have nearly one order of magnitude difference. To reach the same 
accuracy level of 0.01, the ANN requires about 900 training data 
points, whereas the PCNN only needs about 300 training data 
points. As the training data size increases, the difference of 
prediction accuracy between the ANN and PCNN gradually 
reduces. 

 
TABLE 3: Quantitative comparison for different neural 

networks to solve the heat equation 

Neural 
network 

Training time 
(second) 

MSE of 
prediction at 

t = 0 

MSE of 
prediction at 

t = 1

ANN 8.66 0.1998 0.0293 

PCNN1 1475.40 0.0225 0.0079 

PCNN2 1259.91 0.0125 0.0350 

PCNN3 1019.07 0.0139 0.0055 

 



 8 © 2019 by ASME 

 
FIGURE 4: Convergence analysis for the ANN and the 

PCNN3. 
 

3.2 Allen-Cahn equation 
The second example is the Allen-Cahn equation, which is a 

nonlinear reaction-diffusion equation that describes the process 
of phase transition such as grain growth and spinodal 
decomposition. It has become the foundational model for the 
interface diffusion in the phase-field method, which is developed 
to study phase transitions and interfacial dynamics in materials 
science. The purpose of this example is to demonstrate the 
proposed MF-PCNN framework. The Allen-Cahn equation with 
periodic boundary condition in this example is 

 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑢𝑡 െ 0.001൫𝑢𝑥𝑥  𝑢𝑦𝑦൯ ൌ 𝑢 െ 𝑢3,   𝑡, 𝑥, 𝑦 ∈ ሾ0,1ሿ,

𝑢ሺ0, 𝑥, 𝑦ሻ ൌ 0.5ሾ𝑠𝑖𝑛ሺ4𝜋𝑥ሻ  𝑠𝑖𝑛ሺ4𝜋𝑦ሻሿ,

𝑢ሺ𝑡, 0, 𝑦ሻ ൌ 𝑢ሺ𝑡, 1, 𝑦ሻ,    

𝑢𝑥ሺ𝑡, 0, 𝑦ሻ ൌ 𝑢𝑥ሺ𝑡, 1, 𝑦ሻ,   

𝑢ሺ𝑡, 𝑥, 0ሻ ൌ 𝑢ሺ𝑡, 𝑥, 1ሻ,

𝑢𝑦ሺ𝑡, 𝑥, 0ሻ ൌ 𝑢𝑦ሺ𝑡, 𝑥, 1ሻ.

, (20) 

where a non-conserved variable u is the order parameter or phase 
field. 

Based on the results of the previous example, the weights of 
the physical constraints are adaptively adjusted as in Eq. (19). 
The physical loss is given by 
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The initial loss is given by 
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The boundary loss is given by 
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As shown in Eq. (12), the prediction of a MF-PCNN is a 

combination of the LF-PCNN prediction and the difference 
predicted by a ML model (DANN or GP). First, a low-cost LF-
PCNN is trained during the time period 𝑡 ∈ ሾ0, 1ሿ and then used 
as the baseline model. In addition, two high-cost HF-PCNNs 
(HF-PCNN1 and HF-PCNN2) are constructed. As shown in 
TABLE 2, the HF-PCNN1 is trained with data for the time period 
𝑡 ∈ ሾ0, 0.2ሿ, whereas the HF-PCNN2 is trained with the data for 
two time periods, 𝑡 ∈ ሾ0, 0.2ሿ  and 𝑡 ∈ ሾ0.8, 1ሿ . Then DANNs 
and GPs are trained to predict the differences between the LF-
PCNN and HP-PCNN predictions during the time period 𝑡 ∈
ሾ0, 1ሿ. The observed difference between the predictions of the 
LF-PCNN and HF-PCNN1 during the time period 𝑡 ∈ ሾ0, 0.2ሿ  
serves as the training data for the DANN1, DANN2, and GP1. 
The network structure of DANN2 is more complex than 
DANN1. Similarly, the observed difference between the 
predictions of the LF-PCNN and HF-PCNN2 for two time 
periods, 𝑡 ∈ ሾ0, 0.2ሿ  and 𝑡 ∈ ሾ0.8, 1ሿ , serves as the training 
data for the DANN3, DANN4, and GP2. Finally, the prediction 
of the MF-PCNN is the sum of the LF-PCNN prediction and the 
predicted difference by DANNs or GPs. In this example, the 
mean square of the difference between the LF simulation and HF 
simulation is 0.0001 during the time period 𝑡 ∈ ሾ0, 0.2ሿ . 
However, since a coarser mesh and larger time step is used in the 
LF simulation, errors are accumulated over time. Then, the mean 
square of the difference between the LF simulation and HF 
simulation becomes 0.0029 during the time period 𝑡 ∈
ሾ0.8, 1.0ሿ. Therefore, LF simulations are less accurate than HF 
simulations in the later stage. It is necessary and useful to adopt 
the MF-PCNN framework to fully utilize the training data with 
different fidelity. 

The predictions of the phase field from different models, 
including traditional ANN, LF-PCNN, multi-fidelity models 
(combinations of LF-PCNN and DANNs, as well as LF-PCNN 
and GPs), at time t = 0.5 are shown in FIGURE 5. It is seen that 
the traditional ANN has larger prediction errors than PCNNs, 
especially at the saddle points where the true values are zeros. 
Adding physical constraints can significantly reduce the 
prediction errors, as in the LF-PCNN. At some saddle points, the 
phase field predicted by the LF-PCNN is still larger than zero, as 
shown in FIGURE 5(c). Compared to the LF-PCNN, the 
prediction errors of MF-PCNNs can be further reduced by 
adding the prediction of the difference from DANNs or GPs. As 
shown in FIGURE 5(d-i), the phase field predicted by the MF-
PCNNs is almost zero at all saddle points. The difference 
between the predictions of the LF-PCNN and HF-PCNN can be 
captured by DANNs or GPs very well. 

 



 9 © 2019 by ASME 

 

     
  (a)      (b)      (c) 

     
  (d)      (e)      (f) 

     
  (g)      (h)      (i) 

FIGURE 5: The predicted phase fields from different models at t = 0.5. 
 
The quantitative comparisons of training time and the MSE 

of prediction for different ML models to solve the Allen-Cahn 
equation are listed in TABLE 4, where a MF-PCNN is composed 
of a LF-PCNN and a ML model to predict the difference. For 
example, MF-PCNN1 = LF-PCNN+DANN1 means that the MF-
PCNN1 is a combination of the LF-PCNN and DANN1. The 
total training time of a MF-PCNN is the sum of training times 
for the LF-PCNN, HF-PCNN, and the difference ML model 
(DANN or GP). It is noted that the prediction of the HF-PCNN1 
is used in the training of the MF-PCNN1, MF-PCNN2, and MF-
PCNN3, whereas the prediction of the HF-PCNN2 is used in the 
training of the rest of the MF-PCNNs. Therefore, the training 
times of the MF-PCNN4, MF-PCNN5, and MF-PCNN6 are 
longer because of more training data and physical constraints. 
The training time of the MF-PCNNs with GPs is longer than that 

of the MF-PCNNs with DANNs because GPs are 
computationally more expensive. 

The MSEs of predictions at different simulated time periods 
for different ML models are shown in FIGURE 6. In general, the 
MSE of prediction increases over time for different ML models 
except the MF-PCNN3 and MF-PCNN6. Since the prediction of 
the phase field relies on the previous predictions, the error will 
be accumulated over time. It is noted that the time period 𝑡 ∈
ሾ1, 2ሿ  is outside the time range 𝑡 ∈ ሾ0, 1ሿ  of LF training data 
for the LF-PCNN. Therefore, the error for extrapolation is larger, 
which is a common issue for most ML models. Nevertheless, the 
MSEs of extrapolation for the LF-PCNN, MF-PCNN1 and MF-
PCNN4 are one order of magnitude lower than that of the ANN.  
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TABLE 4: Quantitative comparison between different ML models to solve the Allen-Cahn equation 

ML model Training time (second) 
MSE of prediction 

at t = 0.5 
MSE of prediction 

at t = 1.5

ANN 7.93 0.2215 0.8866 

LF-PCNN 774.32 0.0258 0.0684 

MF-PCNN1=LF-PCNN+DANN1 774.32+324.37+79.52=1178.21 0.0133 0.0521 

MF-PCNN2=LF-PCNN+DANN2 774.32+324.37+25.19=1123.88 0.0753 0.8508 

MF-PCNN3=LF-PCNN+GP1 774.32+324.37+1433.66=2532.35 0.0258 0.0684 

MF-PCNN4=LF-PCNN+DANN3 774.32+3095.68+100.38=3970.38 0.0114 0.0399 

MF-PCNN5=LF-PCNN+DANN4 774.32+3095.68+58.01=3928.01 0.0173 0.1926 

MF-PCNN6=LF-PCNN+GP2 774.32+3095.68+10730.40=14600.40 0.0258 0.0684 

The MSE of prediction from the MF-PCNN1 is significantly 
lower than that of the LF-PCNN for 𝑡 ∈ ሾ0, 1ሿ. The difference 
between the MSEs however decreases for 𝑡 ∈ ሾ1, 2ሿ . 
Furthermore, the MSE of prediction at t = 0.5 for the MF-PCNN1 
is decreased by about 50%, compared with that of the LF-PCNN. 
As for the MF-PCNN2, its MSE of prediction is higher than that 
of LF-PCNN when t > 0.5. The MSE of prediction for the MF-
PCNN2 is almost the same as that of the ANN when t > 0.75. 
The increased MSE for the MF-PCNN2 is caused by overfitting 
since the DANN2 has more neurons than the DANN1. The MSE 
of prediction at t = 0 for the MF-PCNN3 is slightly lower than 
that of the LF-PCNN. However, the MSE of prediction at t = 0.25 
for the MF-PCNN3 is larger that of the LF-PCNN. The MSE of 
prediction for the MF-PCNN3 becomes the same as that of the 
LF-PCNN when t > 0.5, which means that the GP1 fails to 
predict the differences and its output is zero. Notice that t = 0.5 
is outside the time range 𝑡 ∈ ሾ0, 0.2ሿ of the HF training data for 
the HF-PCNN1. The prediction is based on extrapolation. The 
errors indicate that DANNs are more robust than GPs for 
extrapolation. 

With more training data and physical constraints, the HF-
PCNN2 has two sampling spaces in the temporal dimension, 
which are [0, 0.2] and [0.8, 1]. The observed difference between 
the predictions of the LF-PCNN and HF-PCNN2 is served as the 
training data for the DANN3, DANN4, and GP2. Therefore, the 
prediction of the difference between the LF-PCNN and HF-
PCNN at t = 0.5 has become an interpolation problem. Compared 
to the MF-PCNN1, the MSE of prediction for the MF-PCNN4 is 
the lowest among all ML models for the most of the time. With 
more training data, the MSE of prediction for the MF-PCNN5 is 
lower than that of the MF-PCNN2. However, the MSE of 
prediction for the MF-PCNN5 becomes higher than that of the 
MF-PCNN4 when t > 0.25 because of the overfitting. Compared 
to the MF-PCNN3, the MSE of prediction for the MF-PCNN6 is 
reduced with more training data when 𝑡 ∈ ሾ0.5, 1.25ሿ. However, 
the MSE of prediction for the MF-PCNN6 becomes the same as 
that of the LF-PCNN when t > 1.25, indicating the failure of 
prediction by GP2. 

Among all ML models in this work, the MF-PCNN1 is the 
best one in comprehensive performance since it has a relatively 
low training time and very good accuracy. The good 
generalization of the MF-PCNN1 comes from the simpler neural 
network structure of the DANN1. 
 

 
FIGURE 6: The change of MSE of prediction for different ML 

models. 
 
4. CONCLUSION 

In this work, a new scheme of multi-fidelity physics-
constrained neural networks is proposed to improve the 
efficiency of training in neural networks by reducing the required 
amount of training data and incorporating physical knowledge as 
constraints. Neural networks with two (or more) levels of 
fidelities are combined to improve the prediction accuracy. Low-
fidelity networks predict the general trend, whereas high-fidelity 
networks model local details and fluctuations. For the concern of 
training cost, low-fidelity networks can be trained with low-
fidelity data, and the prediction accuracy can be further improved 
with supplementary high-fidelity data. Thus, the training 
efficiency is improved from two aspects. The first one is the 
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guidance from the physical knowledge, and the second one is a 
more cost-effective data collection and sampling strategy.  

The physical knowledge can be easily added as the 
regularization terms into the total loss functions in neural 
networks. The physical constraints then can help reduce the 
searching space and guide the searching direction during the 
training. The proposed formulation is generic and can be 
extended to other machine learning approaches, where 
regularization can be similarly applied.  

The proposed scheme is demonstrated with two examples of 
materials modeling. The PCNN is effective for these two 
different types of PDEs with different boundary conditions. The 
classical ANN with small training data sets tends to have large 
prediction errors. By adding physical constraints, the prediction 
accuracy of the PCNN can be one order of magnitude higher than 
the one from the classical ANN. Even with limited training data, 
the prediction of the PCNN is comparable with the original FEM 
solution. The weights associated with physical constraints can be 
adjusted to reflect the importance of the prior knowledge. They 
also affect the prediction accuracy. It is demonstrated that the 
adaptive weighting scheme results in higher prediction accuracy 
and shorter training time because the different losses in the total 
cost function are well balanced and have a similar convergence 
speed. The convergence analysis shows that the required amount 
of training data can be reduced by adding more physical 
constraints. Based on the computational results, DANNs are 
more capable than GPs to do the extrapolation of the difference 
between the LF-PCNN and HF-PCNN. 

The developed MF-PCNN is an efficient approach to predict 
unknown relationships by combining the information from 
physical knowledge and available data. The training efficiency 
can be significantly improved if the training data from numerical 
simulations with different fidelities are utilized to construct MF-
PCNNs. The training data are not limited to numerical simulation 
results only. They can also come from experimental 
measurements. The costs of experimental measurements can also 
be incorporated into the multi-fidelity scheme, where cost-
effective sampling strategies can be taken. 

The potential improvement of the current PCNN could be 
replacing the ANN to be the Recurrent Neural Network (RNN), 
such as long short-term memory (LSTM) neural network. Unlike 
feedforward neural networks, RNNs can use their internal state 
to process sequences of inputs, which may be more appropriate 
to solve time-dependent problems.  

The proposed scheme should not be regarded as the 
replacement of classical numerical simulation methods (e.g. 
finite element and spectral methods) for solving partial 
differential equations. Rather, it enhances the efficiency of 
engineering design when high-fidelity simulations need to be run 
repetitively to obtain samples for design optimization. The 
number of samples for optimization for high-dimensional 
problem usually is very large. The machine learning approach 
therefore only shows its advantage for complex problems with 
high-dimensional searching space with the cost of training 
justified. The proposed scheme has the potential of making 

machine learning useful for real-world engineering applications 
where data sparsity is a common issue.  
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