
 1 © 2019 by ASME

Proceedings of the ASME 2019

International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference

IDETC/CIE2019
August 18-21, 2019, Anaheim, CA, USA

 IDETC2019-98115

MULTI-FIDELITY PHYSICS-CONSTRAINED NEURAL NETWORK AND ITS APPLICATION IN
MATERIALS MODELING

Dehao Liu and Yan Wang1
Woodruff School of Mechanical Engineering

Georgia Institute of Technology
Atlanta, GA 30332, USA

ABSTRACT
Training machine learning tools such as neural networks

requires the availability of sizable data, which can be difficult
for engineering and scientific applications where experiments or
simulations are expensive. In this work, a novel multi-fidelity
physics-constrained neural network is proposed to reduce the
required amount of training data, where physical knowledge is
applied to constrain neural networks, and multi-fidelity networks
are constructed to improve training efficiency. A low-cost low-
fidelity physics-constrained neural network is used as the
baseline model, whereas a limited amount of data from a high-
fidelity simulation is used to train a second neural network to
predict the difference between the two models. The proposed
framework is demonstrated with two-dimensional heat transfer
and phase transition problems, which are fundamental in
materials modeling. Physics is described by partial differential
equations. With the same set of training data, the prediction error
of physics-constrained neural network can be one order of
magnitude lower than that of a classical artificial neural network
without physical constraints. The accuracy of the prediction is
comparable to those from direct numerical solutions of
equations.

Keywords: machine learning; multi-fidelity model; physics-

constrained neural networks; materials modeling; partial
differential equations

1. INTRODUCTION

Machine learning (ML) tools, exemplified by the
convolutional neural network and its derivatives, have
demonstrated success in diverse fields. However, they are very
data-hungry during training and can easily fail in applications
where data are scarce and expensive to collect. The root cause is
the “curse of dimensionality” in training the ML tools. As ML

1 Contact author: yan.wang@me.gatech.edu

tools need to capture more detailed patterns or sensitive features,
more complex modeling structures need to be introduced with
more parameters and degrees of freedom. As a result, training
algorithms need to explore and exploit in a very high-
dimensional parameter space to search for optimal parameters.
When the dimension increases, the volume of parameter spaces
increases exponentially, so does the required amount of training
data to cover the space and ensure the convergence of training.
When the size of the training data set is small, overfitting can
occur. That is, the training results in a spurious relationship that
looks deceptively good but has low generality outside the labeled
data range.

In various engineering and scientific applications, the cost
of obtaining a large amount of data from high-fidelity
simulations or experiments can be prohibitive. Data sparsity is
not helpful to construct meaningful predictive ML models.
Therefore, it is still a challenge for current state-of-the-art ML
techniques to be applied in the domains of engineering or
physical sciences. In the engineering domain, establishing high-
dimensional process-structure-property relationships for either
product or process design is the essential task. In engineering and
scientific communities, human intelligence or knowledge has
been embodied as physical laws or models based on centuries of
data and knowledge accumulation. Giving up the available
physical knowledge and purely relying on data-driven ML tools
to identify the cause-effect relationships in physical sciences and
engineering can be regarded as reinventing the wheel.
Nevertheless, ML provides tools for systematic searching and
exploring nonlinear and nonconvex relationships, which is much
more efficient than ad hoc discovery. It is believed that training
ML tools based on prior knowledge of physics can help navigate
the high-dimensional parameter space with a small amount of
training data.

 2 © 2019 by ASME

It is envisioned that the efficiency of training ML tools under
the constraint of physical knowledge can be improved with small
sample sizes. The physical laws or models can guide the
searching and optimization procedures [1]. Generally, many
physical laws are mathematically described as the relationships
between physical quantities in the forms of ordinary differential
equations (ODEs) or partial differential equations (PDEs). Some
important and useful physical laws include but are not limited to
conservation laws, laws of classical mechanics and
thermodynamics. These physical laws have become the
milestones of knowledge discovery in various scientific and
engineering domains. Based upon physical laws or principles,
various physics-based modeling and simulation techniques have
been proposed to predict the behaviors of physical systems.

Incorporating physical meanings and physical knowledge in
artificial neural networks (ANNs) has been studied from
different perspectives. The first approach is to customize ANNs
and incorporate physical meanings in the architecture. It has been
demonstrated that ANN models can be applied to solve some
special forms of optimization. For example, quadratic
programming problems can be converted to linear
complementarity problems and solved iteratively by projection
neural networks [2,3]. Some efforts have been made for
incorporating prior knowledge into ANNs in order to improve
the training efficiency or prediction accuracy. Here, training
efficiency means the convergence speed. For instance, prior
knowledge can be applied as preprocessing tools to filter training
data [4,5], or embedded as some analytical input-output
functions in additional layers of ANNs [6], to improve the
training efficiency. Prior knowledge can also be expressed as
rules and interpreted with weights and basis functions in the
ANN architecture, which could be further refined using training
data [7,8]. Similarly, finite-element neural networks (FENNs)
[9,10] can be constructed by transforming a finite element model
to a neural network, where the weights of a FENN have physical
meanings of material properties and can be computed in advance
without training. FENNs have been used to obtain the solutions
of differential equations for both forward and inverse problems.
The major challenge of incorporating physical meanings into the
ANN architecture is the complexity of customized networks. For
instance, the number of weights in FENNs is related to the
number of nodes, which could be very large for some high-
dimensional problems with complex geometry.

The second approach to incorporate physical knowledge is
treating it as constraints so that they can guide the training
process. For instance, prior knowledge can be embedded into
ANNs as architectural constraints and connection weight
constraints to improve the training efficiency [11]. In addition to
functional values, the information of derivatives has also been
incorporated as prior knowledge for support vector regression
[12]. ANNs have been used to approximate the solutions of
PDEs. By transforming the original PDEs into their weighted
residual forms, the prior knowledge of model forms and
boundary values can be incorporated as penalty functions during
the training of ANNs [13]. Similarly, the original model forms
and boundary conditions, rather than their weighted residual

forms, can be directly embedded as regularization terms into the
objective function during the training process [14]. A
regularization parameter has been introduced to control the
trade-off between data fitting and knowledge-based
regularization [15]. It has been shown that regularized ANNs
such as multi-layer perceptron (MLP) and radial basis function
(RBF) neural networks can help obtain the solutions of ODEs
and PDEs with higher accuracy and lower memory requirement
than traditional numerical methods [16]. The initial and
boundary conditions can also be incorporated as the
regularization terms to improve the efficiency of ANN training.
For instance, a trial solution is formulated such that it contains
the information of both boundary conditions and the model form
[17,18]. However, it may be difficult to find trial solutions for
boundary value problems that are defined on irregular
boundaries. To tackle this problem, a MLP-RBF synergy model
[19] was further proposed, where the first part of the trial solution
was replaced by the RBF neural network so that the boundary
conditions on irregular boundaries can be satisfied. Another way
to handle arbitrary irregular boundaries is introducing a length
factor [20] into the second part of the trial solution. As a measure
of distance from the boundary, the length factor returns zero on
the boundary and nonzero inside the boundary so that the first
part of the trial solution is unaffected. Similarly, regularized
ANNs were applied to approximate the solutions of ODEs [21],
and a comparison was conducted between the performance of
four different ANNs to solve ODEs [22]. Instead of
regularization, information about boundary conditions can be
explicitly used as equality constraints between the weights in
ANNs such that a constrained backpropagation training can be
taken [23–25]. The effectiveness of regularization during the ML
training has been demonstrated in the above work. However, the
training efficiency is still limited in high-dimensional problems,
where the sampling of solutions from PDEs or ODEs can be
costly.

In this paper, a multi-fidelity framework for the physics-
constrained neural network (PCNN) is proposed to help
construct high-dimensional surrogate models more efficiently.
Here, PCNNs are constructed to approximate and predict the
solutions of PDEs. Some solutions from simulations serve as the
training data. The prior knowledge of PDEs, as well as the initial
and boundary conditions, are applied to guide the training
process of PCNNs with reduced searching space. The multi-
fidelity concept is introduced to further reduce the required
amount of training data. By combining a low-fidelity physics-
constrained neural network (LF-PCNN) and a high-fidelity
physics-constrained neural network (HF-PCNN), a multi-fidelity
physics-constrained neural network (MF-PCNN) can be created
with a lower training cost and higher prediction accuracy. The
LF-PCNN is trained with low-fidelity simulation results,
whereas the HF-PCNN is trained from high-fidelity simulations.
The MF-PCNN is constructed by combining the predictions
from the LF-PCNN and the difference between the LF-PCNN
and HF-PCNN predictions. The advantage of the MF-PCNN is
that the overall amount of training data can be reduced in order
to achieve the similar level of accuracy by using the HF-PCNN

 3 © 2019 by ASME

alone. In this paper, two examples are used to demonstrate the
efficiency of the MF-PCNN framework. One example is the
prediction of the temperature field in a heat transfer problem, and
the other is the prediction of the phase field in a phase transition.
It is shown that a MF-PCNN can be constructed with very
limited simulation data to achieve a good accuracy of prediction.

In the remainder of this paper, the training of PCNNs, the
construction of MF-PCNNs, and the setup of the computational
scheme are described in Section 2. The computational results of
the examples are shown in Section 3.

2. METHODOLOGY

In MF-PCNNs, the training data for LF-PCNNs and HF-
PCNNs can be obtained from the analytical or numerical
solutions of PDEs, e.g. from finite-element method (FEM).
During the training, the prior knowledge about the form of PDEs
or boundary values is added as the regularization terms in the
loss function. The knowledge constraints provide guidance to the
searching direction for optimization. The MF-PCNN is
constructed based on the information from the LF-PCNN as well
as the additional information that the HF-PCNN provides. The
cost of obtaining high-fidelity information is higher than that of
low-fidelity one. Therefore, the allocation of computational
resources between high- and low-fidelity simulations can help
reduce the overall training cost.

2.1 Training of PCNNs

Generally, a wide range of physical phenomena and
dynamics can be described by PDEs, including heat transfer,
advection-diffusion process, fluid dynamics, and others. Let us
consider a time-dependent parametrized PDE with the general
form

 𝑃 ቀ𝑢, డ௨

డ௧
, డ௨

డ𝐱
, డమ௨

డ௧మ , డమ௨

డ𝐱మ , … ቁ ൌ 𝑓ሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝐱 ∈ Ω, (1)

where 𝑢ሺ𝑡, 𝐱ሻ is the hidden solution to be found, 𝑓ሺ𝑡, 𝐱ሻ is a
source or sink term, 𝑡 is the time, 𝐱 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ is the
spatial vector, and Ω ∈ ℝ௡ denotes the definition domain. This
general PDE is subject to initial conditions (ICs)

 𝐼 ቀ𝑢, డ௨

డ௧
, డమ௨

డ௧మ , … ቁ ൌ 𝑔ሺ𝐱ሻ, 𝑡 ൌ 0, 𝐱 ∈ Ω, (2)

and boundary conditions (BCs)

 𝑆 ቀ𝑢, డ௨

డ௧
, డ௨

డ𝐱
, డమ௨

డ௧మ , డమ௨

డ𝐱మ , … ቁ ൌ ℎሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝐱 ∈ ∂Ω, (3)

where ∂Ω is the boundary of the definition domain. A more
compact form of the above initial-boundary value problem can
be written as
 𝐃ሾ𝑢ሺ𝑡, 𝐱ሻሿ ൌ 𝑓ሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝐱 ∈ Ω, (4)
 𝚲ሾ𝑢ሺ0, 𝐱ሻሿ ൌ 𝑔ሺ𝐱ሻ, 𝑡 ൌ 0, 𝐱 ∈ Ω, (5)
 𝚪ሾ𝑢ሺ𝑡, 𝐱ሻሿ ൌ ℎሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝐱 ∈ ∂Ω, (6)
where 𝐃ሾ∙ሿ , 𝚲ሾ∙ሿ , and 𝚪ሾ∙ሿ are differential operators. For
example, the three-dimensional (3D) heat equation without the
source term corresponds to 𝐃ሾ𝑢ሺ𝑡, 𝐱ሻሿ ൌ 𝑢௧ െ 𝛼൫𝑢௫௫ ൅ 𝑢௬௬ ൅
𝑢௭௭൯ ൌ 0, where α is the thermal diffusivity, and the subscripts
represent the partial derivatives with respect to either time or
space.

In this work, the MLP architecture is used as a
demonstration, which includes one input layer for ሺ𝑡, 𝐱ሻ ,
multiple hidden layers, and one output layer for 𝑈ሺ𝑡, 𝐱ሻ to
approximate the true solution 𝑢ሺ𝑡, 𝐱ሻ . The neurons are
connected with those in the neighbor layers, and the weights
represent the strength of connections. The output from the hidden
layer to the following layer is calculated as
 𝑦𝒊 ൌ 𝜑൫∑ 𝑤௜௝𝜃௝ ൅ 𝑏௜൯, (7)
where 𝑤௜௝ is the weight of the connection between neuron j in
the previous layer and neuron i in the current layer, 𝜃௝ is the j-
th input value from the previous layer, and 𝑏௜ is the bias for the
neuron i in the current layer. 𝜑 is a nonlinear activation
function, which can be sigmoid, tanh, rectified linear unit, or
others.

The weights of a PCNN can be learned by minimizing the
mean squared loss or total cost function
 𝐸 ൌ 𝜆்𝐸் ൅ 𝜆௉𝐸௉ ൅ 𝜆ூ𝐸ூ ൅ 𝜆௦𝐸௦, (8)
where

 𝐸் ൌ ଵ

ே೅
∑ |𝑈ሺ𝑡௜

், 𝒙௜
்ሻ െ 𝑇ሺ𝑡௜

், 𝒙௜
்ሻ|ଶே೅

௜ୀଵ

is the loss caused by the discrepancy between the training data

𝑇ሺ∙ሻ and the PCNN model prediction 𝑈ሺ∙ሻ, ቄ𝑡௜
ሺ∙ሻ, 𝐱௜

ሺ∙ሻቅ denotes

the sampling points in the defined domain, and 𝑁ሺ∙ሻ denotes the
number of sampling points. Similarly,

 𝐸௉ ൌ ଵ

ேು
∑ |𝐃ሾ𝑈ሺ𝑡௜

௉, 𝐱௜
௉ሻሿ െ 𝑓ሺ𝑡௜

௉, 𝐱௜
௉ሻ|ଶேು

௜ୀଵ ,

 𝐸ூ ൌ
ଵ

ே಺
∑ |𝚲ሾ𝑈ሺ𝑡௜

ூ, 𝐱௜
ூሻሿ െ 𝑔ሺ𝐱௜

ூሻ|ଶே಺
௜ୀଵ ,

and

 𝐸ௌ ൌ
ଵ

ேೄ
∑ ห𝚪ሾ𝑈ሺ𝑡௜

ௌ, 𝐱௜
ௌሻሿ െ ℎሺ𝑡௜

ௌ, 𝐱௜
ௌሻห

ଶேೄ
௜ୀଵ

are the losses caused by the violations of the model, initial
conditions, and boundary conditions as the physical constraints
from Eqs. (4)-(6). The constraint on weights of different losses
is given as
 𝜆் ൅ 𝜆௉ ൅ 𝜆ூ ൅ 𝜆௦ ൌ 1. (9)
The relative importance of prior knowledge can be adjusted by
changing the weights of physical constraints 𝜆௉, 𝜆ூ and 𝜆ௌ. If
the total loss function only includes the training loss 𝐸், then
this is the traditional pure data-driven ANN to solve the initial-
boundary value problem. By adding physical losses 𝐸௉ , 𝐸ூ
and 𝐸ௌ as the regularization terms, the prior physical
knowledge can help to reduce the size of searching space and
provide guidance for the searching directions in training.

2.2 Construction of MF-PCNNs

The LF-PCNN and HF-PCNN must be trained first before
the MF-PCNN is constructed. In this work, the fidelities are
determined by the resolutions of FEM simulations given the
same density of physical constraints. To be more specific, low-
fidelity simulations are used to construct the LF-PCNN during a
long time period 𝑡 ∈ ሾ0, 𝑇ሿ , whereas high-resolution
simulations are applied for the HF-PCNN during a short time
period 𝑡 ∈ ሾ0, 𝑇଴ሿ ሺ𝑇଴ ൏ 𝑇ሻ.

 4 © 2019 by ASME

After the LF-PCNN and HF-PCNN are trained, the
difference between the predictions of the LF-PCNN 𝑈௅ሺ𝑡, 𝐱ሻ
and HF-PCNN 𝑈ுሺ𝑡, 𝐱ሻ is calculated as
 𝛿ሺ𝑡, 𝐱ሻ ൌ 𝑈ுሺ𝑡, 𝐱ሻ െ 𝑈௅ሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇଴ሿ, 𝐱 ∈ Ω. (10)
Then another ANN called difference artificial neural network
(DANN) is constructed to predict the difference between the LF-
PCNN and HF-PCNN, denoted as 𝑈ఋሺ𝑡, 𝐱ሻ, during a longer time
period 𝑡 ∈ ሾ0, 𝑇ሿ. The weights of the DANN can be learned by
using the observed difference 𝛿ሺ𝑡, 𝐱ሻ as the training data to
minimize the mean squared error loss
𝐸ఋ ൌ ଵ

ேഃ
∑ |𝑈ఋሺ𝑡௜, 𝒙௜ሻ െ 𝛿ሺ𝑡௜, 𝒙௜ሻ|ଶேഃ

௜ୀଵ , 𝑡 ∈ ሾ0, 𝑇଴ሿ, 𝒙 ∈ Ω, (11)

where 𝑁ఋ is the number of sampling points for the DANN. It is
assumed that the evolution of the difference between the LF-
PCNN and HF-PCNN during a longer time period 𝑡 ∈ ሾ0, 𝑇ሿ
can be predicted by the DANN using the observed difference
𝛿ሺ𝑡, 𝐱ሻ as the training data during the short time period 𝑡 ∈
ሾ0, 𝑇଴ሿ. Then the MF-PCNN is a combination of the LF-PCNN
and DANN. The prediction from the MF-PCNN during the time
period 𝑡 ∈ ሾ0, 𝑇ሿ is given by
 𝑈ெሺ𝑡, 𝐱ሻ ൌ 𝑈௅ሺ𝑡, 𝐱ሻ ൅ 𝑈ఋሺ𝑡, 𝐱ሻ, 𝑡 ∈ ሾ0, 𝑇ሿ, 𝐱 ∈ Ω. (12)

2.3 Experimental setup of the proposed MF-PCNN

The construction and training of the MF-PCNN are
accomplished by using Tensorflow [26], which is an open-source
Python library for machine learning. The partial derivatives of
the ANNs are calculated based on the chain rules using the
automatic differentiation [27]. Automatic differentiation is
different from the numerical differentiation such as the method
of finite difference. By applying the chain rules repeatedly, the
derivatives of arbitrary order can be computed automatically and
accurately to a working precision.

Two examples are applied to demonstrate the proposed MF-
PCNN framework. The first example is a heat transfer problem
where the evolution of the two-dimensional (2D) temperature
distribution is modeled with the heat equation. The heat transfer
example is used to demonstrate the effectiveness of the PCNN
and test different weighting schemes of the total loss function.
The second example is the phase transition problem where the
evolution of the 2D phase field is modeled with the Allen-Cahn
equation. The phase transition example is utilized to demonstrate
the efficiency of the MF-PCNN framework.

The details of the computational setup for different ML
models in the heat transfer and the phase transition examples are
listed in TABLE 1 and TABLE 2, respectively. The ANNs, LF-
PCNNs, and HF-PCNNs have the same structure of 30-20-30-
20. That is, each of the networks has 4 layers. There are 30
neurons in the first and third layer, and 20 neurons in the second

and last layer. The structures of the DANNs are simpler to avoid
overfitting, which are 5-5-5-5 and 10-10-10-10. Two Gaussian
process (GP) surrogate models with the RBF kernel are also
constructed to predict the difference between the LF-PCNN and
HF-PCNN for comparison purpose. The tanh function is used as
the activation function. All of the loss functions of neural
networks are minimized by using a gradient-based optimization
algorithm called Adam [28] for the consideration of efficiency.

The training data for the ANNs, LF-PCNNs, and HF-
PCNNs come from the FEM solutions of COMSOL, whereas the
training data for the DANNs and GPs come from the observed
differences between the predictions of the LF-PCNNs and HF-
PCNNs during the short time period 𝑡 ∈ ሾ0, 𝑇଴ሿ. The sampling
strategy is uniform in both temporal and spatial dimensions for
the convenience of comparison with the FEM solutions. Other
sampling strategies such as random sampling, orthogonal
sampling, and Latin Hypercube sampling can also be adopted.

TABLE 1 and TABLE 2 list the sizes of training data sets
for the heat transfer and phase transition examples respectively.
For instance, the amount of training data for the ANNs is
21×6×6, which means that there are 21 sampling points in the
temporal dimension, 6 sampling points in the x direction of the
spatial domain, and 6 sampling points in the y direction of the
spatial domain. For the PCNNs in the heat transfer example, the
number of physical constraints is 41×11×11. That is, there are 41
sampling points in the temporal dimension, 11 sampling points
in the x direction and 11 sampling points in the y dimension of
the spatial domain. The time period represents the size of the
sampling space in the temporal dimension. In the heat transfer
example, three different weighting schemes (PCNN1, PCNN2,
and PCNN3) are compared. In the phase transition example, two
HF-PCNNs (HF-PCNN1 and HF-PCNN2) are trained. The HF-
PCNN1 is trained during the time period 𝑡 ∈ ሾ0, 0.2ሿ, whereas
the HF-PCNN2 is trained during two time periods, 𝑡 ∈ ሾ0, 0.2ሿ
and 𝑡 ∈ ሾ0.8, 1ሿ. Therefore, the amount of training data and the
number of physical constraints for the HF-PCNN2 are twice
those of the HF-PCNN1. The observed difference between the
predictions of the LF-PCNN and HF-PCNN1 is served as the
training data for the DANN1, DANN2, and GP1. Similarly, the
observed difference between the predictions of the LF-PCNN
and HF-PCNN2 is served as the training data for the DANN3,
DANN4, and GP2. For ANNs, LF-PCNNs, and HF-PCNNs, the
training of a neural network stops when the total loss E is lower
than a threshold value 0.01. Similarly, the training of a DANN
stops when the loss function 𝐸ఋ is below 0.01.

TABLE 1: The setup for different ML models in the heat transfer example

ML model Structure
Amount of training

data (t×x×y)
Number of physical
constraints (t×x×y)

Time period/s

ANN 30-20-30-20 21×6×6 0 [0, 1]
PCNN1, PCNN2, PCNN3 30-20-30-20 21×6×6 41×11×11 [0, 1]

 5 © 2019 by ASME

TABLE 2: The setup for different ML models in the phase transition example

ML model Structure
Amount of training

data (t×x×y)
Number of physical
constraints (t×x×y)

Time period/s

ANN 30-20-30-20 21×6×6 0 [0, 1]
LF-PCNN 30-20-30-20 21×6×6 21×11×11 [0, 1]

HF-PCNN1 30-20-30-20 9×21×21 5×11×11 [0, 0.2]
HF-PCNN2 30-20-30-20 18×21×21 10×11×11 [0, 0.2], [0.8, 1]

DANN1 5-5-5-5 9×26×26 0 [0, 0.2]
DANN2 10-10-10-10 9×26×26 0 [0, 0.2]
DANN3 5-5-5-5 18×26×26 0 [0, 0.2], [0.8, 1]
DANN4 10-10-10-10 18×26×26 0 [0, 0.2], [0.8, 1]

GP1 RBF kernel 9×26×26 0 [0, 0.2]
GP2 RBF kernel 18×26×26 0 [0, 0.2], [0.8, 1]

3. EXPERIMENTAL RESULTS
In this section, the results for the heat transfer and phase

transition examples are shown. The heat transfer example is used
to demonstrate the effectiveness of the PCNN and test different
weighting schemes of the total loss function. A convergence
analysis for the ANN and the PCNN is also conducted. The phase
transition problem is to demonstrate the efficiency of the MF-
PCNN framework.

3.1 Heat equation

The evolution of temperature distributions can be modeled
by parabolic PDEs. The heat equation describes the diffusion
process of energy, which is important in modeling
microstructure evolution during phase transition. The 2D heat
equation with the zero Neumann boundary condition used in this
example is

⎩
⎪⎪
⎨

⎪⎪
⎧𝑢௧ െ 0.01൫𝑢௫௫ ൅ 𝑢௬௬൯ ൌ 0, 𝑡, 𝑥, 𝑦 ∈ ሾ0,1ሿ,

𝑢ሺ0, 𝑥, 𝑦ሻ ൌ 0.5ሾ𝑠𝑖𝑛ሺ4𝜋𝑥ሻ ൅ 𝑠𝑖𝑛ሺ4𝜋𝑦ሻሿ,
𝑢௫ሺ𝑡, 0, 𝑦ሻ ൌ 0,
𝑢௫ሺ𝑡, 1, 𝑦ሻ ൌ 0,
𝑢௬ሺ𝑡, 𝑥, 0ሻ ൌ 0,
𝑢௬ሺ𝑡, 𝑥, 1ሻ ൌ 0.

, (13)

where u is the 2D temperature field.
The goal of training a neural network is to ensure the

prediction 𝑈ሺ𝑡, 𝑥, 𝑦ሻ from the neural network can approximate
the true solution 𝑢ሺ𝑡, 𝑥, 𝑦ሻ from FEM simulations with the
desired accuracy. Here, the physical loss is

 𝐸௉ ൌ ଵ

ேು
∑ ቮ

𝑈௧ሺ𝑡௜
௉, 𝑥௜

௉, 𝑦௜
௉ሻ

െ0.01𝑈௫௫ሺ𝑡௜
௉, 𝑥௜

௉, 𝑦௜
௉ሻ

െ0.01𝑈௬௬ሺ𝑡௜
௉, 𝑥௜

௉, 𝑦௜
௉ሻ

ቮ

ଶ

ேು
௜ୀଵ . (14)

The initial loss is given by

 𝐸ூ ൌ ଵ

ே಺
∑ ቤ

𝑈ሺ0, 𝑥௜
ூ, 𝑦௜

ூሻ
െ0.5ሾ𝑠𝑖𝑛ሺ4𝜋𝑥௜

ூሻ ൅ 𝑠𝑖𝑛ሺ4𝜋𝑦௜
ூሻሿ

ቤ
ଶ

ே಺
௜ୀଵ . (15)

The boundary loss is

 𝐸ௌ ൌ ଵ

ேೄ
∑ ൥

ห𝑈௫ሺ𝑡௜
ௌ, 0, 𝑦௜

ௌሻห
ଶ

൅ ห𝑈௫ሺ𝑡௜
ௌ, 1, 𝑦௜

ௌሻห
ଶ

൅ห𝑈௬ሺ𝑡௜
ௌ, 𝑥௜

ௌ, 0ሻห
ଶ

൅ ห𝑈௬ሺ𝑡௜
ௌ, 𝑥௜

ௌ, 1ሻห
ଶ൩ேೄ

௜ୀଵ . (16)

To assess the sensitivity of weights, three weighting
schemes of the total loss function are tested and compared with
each other. In the PCNN1, the weights are equal and fixed in the
total loss function
 𝐸 ൌ 0.25ሺ𝐸் ൅ 𝐸௉ ൅ 𝐸ூ ൅ 𝐸௦ሻ. (17)
In the PCNN2, the weights are unequal and fixed in the total loss
function
 𝐸 ൌ 0.125ሺ𝐸் ൅ 2𝐸௉ ൅ 4𝐸ூ ൅ 𝐸௦ሻ. (18)
In the PCNN3, the weights are adaptive during the training,
which are proportional to the percentages of individual losses in
the total loss function

 𝐸 ൌ
ா೅

మାாು
మାா಺

మାாೄ
మ

ா೅ାாುାா಺ାாೞ
. (19)

Assigning higher weights to the physical constraints indicates
that prior knowledge will be more influential in the training
process. When the training data is sparse, increasing the number
of physical constraints can help improve the training efficiency.
In addition, the weights of physical constraints need to be large
enough in order to ensure the training efficiency and prediction
accuracy. When the weights of physical constraints are assigned,
it is also necessary to consider the balance among different losses
such that the reduction speeds of the four errors are comparable.
The ideal case is that the four losses are reduced at the same
speed so that the overall reduction speed of the total loss is
maximized.

Here, the training data come from the FEM solutions.
FIGURE 1 shows the original FEM solution of the temperature
field, as well as the predictions by the traditional ANN, the
equally-weighted PCNN1, the unequally-weighted PCNN2, and
the adaptively-weighted PCNN3 at t = 1, respectively. The errors
of the predicted temperature fields compared with the original
FEM solution for different neural networks at t = 1 are shown in
FIGURE 2. Here, the prediction error is the absolute difference
between the prediction from a neural network and the FEM
solution. The dots in the figures indicate the evaluation points.
There are 26×26 evaluation points in the 2D domain. It is seen

 6 © 2019 by ASME

 (a) (b) (c)

 (d) (e)

FIGURE 1: The predicted temperature fields from different models at t = 1: (a) original FEM solution, (b) traditional ANN, (c)
equally-weighted PCNN1, (d) unequally-weighted PCNN2, and (e) adaptively-weighted PCNN3.

 (a) (b)

 (c) (d)

FIGURE 2: The errors of the predicted temperature fields compared to the FEM solution at t = 1: (a) traditional ANN, (b) equally-
weighted PCNN1, (c) unequally-weighted PCNN2, and (d) adaptively-weighted PCNN3.

 7 © 2019 by ASME

 (a) (b) (c)
FIGURE 3: The learning curves for different PCNNs: (a) the equally-weighted PCNN1, (b) the unequally-weighted PCNN2, and (c)

the adaptively-weighted PCNN3.

that the prediction from the ANN is less accurate than the three
PCNNs, because of the small training data set. The error is
especially large in the area around saddle points. Notice that the
training data for the ANN and PCNNs come from the same LF
simulations. With physical constraints added as regularization
terms, the prediction errors of the PCNNs are reduced
significantly.

The learning curves for different PCNNs are shown in
FIGURE 3. For the three different PCNNs, all losses
monotonically decrease during the training. However, the
difference between the convergence speeds of individual losses
varies with the different weighting schemes. For the equally-
weighted PCNN1, as shown in FIGURE 3(a), the initial loss is
one order of magnitude larger than the boundary loss, meaning
that the difference between the convergence speeds of individual
losses is large. Therefore, it takes a longer time for the PCNN1
to converge. For the unequally-weighted PCNN2, the weights of
physical constraints are higher in order to increase the influence
of prior knowledge. As a result, the different losses are within the
same order of magnitude, as shown in FIGURE 3(b). As for the
adaptively-weighted PCNN3, the weights are dynamically
adjusted based on the percentages of individual losses in the total
loss function. As shown in FIGURE 3(c), the different losses
converged at the same speed and are well-balanced. The training
time is the shortest among the three cases.

The quantitative comparison of training time and the mean
squared error (MSE) of prediction for four neural networks is
listed in TABLE 3. All MSEs of prediction for the PCNN1 and
PCNN3 are almost one order of magnitude lower than that for
the ANN. As a result of stronger enforcement for the physical
constraints, the prediction accuracy of the PCNN2 is higher than
that of the PCNN1 at t = 0. However, the MSE of prediction at t
= 1 for the PCNN2 is larger than that of the PCNN1. This could
be caused by the in-balance between different losses in the
PCNN2. As shown in FIGURE 3(b), the training loss is still
larger than the threshold value 0.01 when the training is finished,
although the total loss as the weighted average has reached the
threshold. The adaptively-weighted PCNN3 has all individual
losses well-balanced and has the highest prediction accuracy.

The PCNN3 also has the least training time among the three
PCNNs. Notice that the computational time for training the
PCNNs is much longer than that for the ANN, because additional
information from physical knowledge is used in the training. In
engineering applications, simulations, especially high-fidelity
ones, are computationally expensive. Therefore, the simulation
results as the training data are sparse. However, prior knowledge
can be obtained without expensive computation, which can be
regarded as the supplemental data for training.

The convergence speeds of the ANN and the adaptively-
weighted PCNN3 with respect to the amount of training data are
compared in FIGURE 4. It is shown that the required amount of
training data to reach certain accuracy level of prediction at time
t = 1 can be reduced by adding physical constraints. Here, the
number of physical constraints of the PCNN3 is 21×6×6 = 756.
The prediction MSEs at t = 1 of both ANN and PCNN decrease
when the training data size increases. The advantage of PCNN
over ANN is obvious when the training data size is small. When
the training data size is less than 400, the prediction accuracy can
have nearly one order of magnitude difference. To reach the same
accuracy level of 0.01, the ANN requires about 900 training data
points, whereas the PCNN only needs about 300 training data
points. As the training data size increases, the difference of
prediction accuracy between the ANN and PCNN gradually
reduces.

TABLE 3: Quantitative comparison for different neural

networks to solve the heat equation

Neural
network

Training time
(second)

MSE of
prediction at

t = 0

MSE of
prediction at

t = 1

ANN 8.66 0.1998 0.0293

PCNN1 1475.40 0.0225 0.0079

PCNN2 1259.91 0.0125 0.0350

PCNN3 1019.07 0.0139 0.0055

 8 © 2019 by ASME

FIGURE 4: Convergence analysis for the ANN and the

PCNN3.

3.2 Allen-Cahn equation
The second example is the Allen-Cahn equation, which is a

nonlinear reaction-diffusion equation that describes the process
of phase transition such as grain growth and spinodal
decomposition. It has become the foundational model for the
interface diffusion in the phase-field method, which is developed
to study phase transitions and interfacial dynamics in materials
science. The purpose of this example is to demonstrate the
proposed MF-PCNN framework. The Allen-Cahn equation with
periodic boundary condition in this example is

⎩
⎪⎪
⎨

⎪⎪
⎧𝑢𝑡 െ 0.001൫𝑢𝑥𝑥 ൅ 𝑢𝑦𝑦൯ ൌ 𝑢 െ 𝑢3, 𝑡, 𝑥, 𝑦 ∈ ሾ0,1ሿ,

𝑢ሺ0, 𝑥, 𝑦ሻ ൌ 0.5ሾ𝑠𝑖𝑛ሺ4𝜋𝑥ሻ ൅ 𝑠𝑖𝑛ሺ4𝜋𝑦ሻሿ,

𝑢ሺ𝑡, 0, 𝑦ሻ ൌ 𝑢ሺ𝑡, 1, 𝑦ሻ,

𝑢𝑥ሺ𝑡, 0, 𝑦ሻ ൌ 𝑢𝑥ሺ𝑡, 1, 𝑦ሻ,

𝑢ሺ𝑡, 𝑥, 0ሻ ൌ 𝑢ሺ𝑡, 𝑥, 1ሻ,

𝑢𝑦ሺ𝑡, 𝑥, 0ሻ ൌ 𝑢𝑦ሺ𝑡, 𝑥, 1ሻ.

, (20)

where a non-conserved variable u is the order parameter or phase
field.

Based on the results of the previous example, the weights of
the physical constraints are adaptively adjusted as in Eq. (19).
The physical loss is given by

 𝐸𝑃 ൌ
1

𝑁𝑃
∑

ተ
ተ

𝑈𝑡൫𝑡𝑖
𝑃, 𝑥𝑖

𝑃, 𝑦𝑖
𝑃൯

െ0.001𝑈𝑥𝑥൫𝑡𝑖
𝑃, 𝑥𝑖

𝑃, 𝑦𝑖
𝑃൯

െ0.001𝑈𝑦𝑦൫𝑡𝑖
𝑃, 𝑥𝑖

𝑃, 𝑦𝑖
𝑃൯

െ𝑈൫𝑡𝑖
𝑃, 𝑥𝑖

𝑃, 𝑦𝑖
𝑃൯ ൅ 𝑈3൫𝑡𝑖

𝑃, 𝑥𝑖
𝑃, 𝑦𝑖

𝑃൯

ተ
ተ

2

𝑁𝑃
𝑖ൌ1 . (21)

The initial loss is given by

 𝐸𝐼 ൌ
1

𝑁𝐼
∑ ቤ

𝑈൫0, 𝑥𝑖
𝐼, 𝑦𝑖

𝐼൯

െ0.5ൣ𝑠𝑖𝑛ሺ4𝜋𝑥𝑖
𝐼ሻ ൅ 𝑠𝑖𝑛൫4𝜋𝑦𝑖

𝐼൯൧
ቤ

2

𝑁𝐼
𝑖ൌ1 . (22)

The boundary loss is given by

 𝐸𝑆 ൌ
1

𝑁𝑆
∑

⎣
⎢
⎢
⎢
⎡ ห𝑈൫𝑡𝑖

𝑆, 0, 𝑦𝑖
𝑆൯ െ 𝑈൫𝑡𝑖

𝑆, 1, 𝑦𝑖
𝑆൯ห

2

൅ห𝑈𝑥൫𝑡𝑖
𝑆, 0, 𝑦𝑖

𝑆൯ െ 𝑈𝑥൫𝑡𝑖
𝑆, 1, 𝑦𝑖

𝑆൯ห
2

൅|𝑈ሺ𝑡𝑖
𝑆, 𝑥𝑖

𝑆, 0ሻ െ 𝑈ሺ𝑡𝑖
𝑆, 𝑥𝑖

𝑆, 1ሻ|2

൅ห𝑈𝑦ሺ𝑡𝑖
𝑆, 𝑥𝑖

𝑆, 0ሻ െ 𝑈𝑦ሺ𝑡𝑖
𝑆, 𝑥𝑖

𝑆, 1ሻห
2
⎦
⎥
⎥
⎥
⎤

𝑁𝑆
𝑖ൌ1 . (23)

As shown in Eq. (12), the prediction of a MF-PCNN is a

combination of the LF-PCNN prediction and the difference
predicted by a ML model (DANN or GP). First, a low-cost LF-
PCNN is trained during the time period 𝑡 ∈ ሾ0, 1ሿ and then used
as the baseline model. In addition, two high-cost HF-PCNNs
(HF-PCNN1 and HF-PCNN2) are constructed. As shown in
TABLE 2, the HF-PCNN1 is trained with data for the time period
𝑡 ∈ ሾ0, 0.2ሿ, whereas the HF-PCNN2 is trained with the data for
two time periods, 𝑡 ∈ ሾ0, 0.2ሿ and 𝑡 ∈ ሾ0.8, 1ሿ . Then DANNs
and GPs are trained to predict the differences between the LF-
PCNN and HP-PCNN predictions during the time period 𝑡 ∈
ሾ0, 1ሿ. The observed difference between the predictions of the
LF-PCNN and HF-PCNN1 during the time period 𝑡 ∈ ሾ0, 0.2ሿ
serves as the training data for the DANN1, DANN2, and GP1.
The network structure of DANN2 is more complex than
DANN1. Similarly, the observed difference between the
predictions of the LF-PCNN and HF-PCNN2 for two time
periods, 𝑡 ∈ ሾ0, 0.2ሿ and 𝑡 ∈ ሾ0.8, 1ሿ , serves as the training
data for the DANN3, DANN4, and GP2. Finally, the prediction
of the MF-PCNN is the sum of the LF-PCNN prediction and the
predicted difference by DANNs or GPs. In this example, the
mean square of the difference between the LF simulation and HF
simulation is 0.0001 during the time period 𝑡 ∈ ሾ0, 0.2ሿ .
However, since a coarser mesh and larger time step is used in the
LF simulation, errors are accumulated over time. Then, the mean
square of the difference between the LF simulation and HF
simulation becomes 0.0029 during the time period 𝑡 ∈
ሾ0.8, 1.0ሿ. Therefore, LF simulations are less accurate than HF
simulations in the later stage. It is necessary and useful to adopt
the MF-PCNN framework to fully utilize the training data with
different fidelity.

The predictions of the phase field from different models,
including traditional ANN, LF-PCNN, multi-fidelity models
(combinations of LF-PCNN and DANNs, as well as LF-PCNN
and GPs), at time t = 0.5 are shown in FIGURE 5. It is seen that
the traditional ANN has larger prediction errors than PCNNs,
especially at the saddle points where the true values are zeros.
Adding physical constraints can significantly reduce the
prediction errors, as in the LF-PCNN. At some saddle points, the
phase field predicted by the LF-PCNN is still larger than zero, as
shown in FIGURE 5(c). Compared to the LF-PCNN, the
prediction errors of MF-PCNNs can be further reduced by
adding the prediction of the difference from DANNs or GPs. As
shown in FIGURE 5(d-i), the phase field predicted by the MF-
PCNNs is almost zero at all saddle points. The difference
between the predictions of the LF-PCNN and HF-PCNN can be
captured by DANNs or GPs very well.

 9 © 2019 by ASME

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

FIGURE 5: The predicted phase fields from different models at t = 0.5.

The quantitative comparisons of training time and the MSE

of prediction for different ML models to solve the Allen-Cahn
equation are listed in TABLE 4, where a MF-PCNN is composed
of a LF-PCNN and a ML model to predict the difference. For
example, MF-PCNN1 = LF-PCNN+DANN1 means that the MF-
PCNN1 is a combination of the LF-PCNN and DANN1. The
total training time of a MF-PCNN is the sum of training times
for the LF-PCNN, HF-PCNN, and the difference ML model
(DANN or GP). It is noted that the prediction of the HF-PCNN1
is used in the training of the MF-PCNN1, MF-PCNN2, and MF-
PCNN3, whereas the prediction of the HF-PCNN2 is used in the
training of the rest of the MF-PCNNs. Therefore, the training
times of the MF-PCNN4, MF-PCNN5, and MF-PCNN6 are
longer because of more training data and physical constraints.
The training time of the MF-PCNNs with GPs is longer than that

of the MF-PCNNs with DANNs because GPs are
computationally more expensive.

The MSEs of predictions at different simulated time periods
for different ML models are shown in FIGURE 6. In general, the
MSE of prediction increases over time for different ML models
except the MF-PCNN3 and MF-PCNN6. Since the prediction of
the phase field relies on the previous predictions, the error will
be accumulated over time. It is noted that the time period 𝑡 ∈
ሾ1, 2ሿ is outside the time range 𝑡 ∈ ሾ0, 1ሿ of LF training data
for the LF-PCNN. Therefore, the error for extrapolation is larger,
which is a common issue for most ML models. Nevertheless, the
MSEs of extrapolation for the LF-PCNN, MF-PCNN1 and MF-
PCNN4 are one order of magnitude lower than that of the ANN.

 10 © 2019 by ASME

TABLE 4: Quantitative comparison between different ML models to solve the Allen-Cahn equation

ML model Training time (second)
MSE of prediction

at t = 0.5
MSE of prediction

at t = 1.5

ANN 7.93 0.2215 0.8866

LF-PCNN 774.32 0.0258 0.0684

MF-PCNN1=LF-PCNN+DANN1 774.32+324.37+79.52=1178.21 0.0133 0.0521

MF-PCNN2=LF-PCNN+DANN2 774.32+324.37+25.19=1123.88 0.0753 0.8508

MF-PCNN3=LF-PCNN+GP1 774.32+324.37+1433.66=2532.35 0.0258 0.0684

MF-PCNN4=LF-PCNN+DANN3 774.32+3095.68+100.38=3970.38 0.0114 0.0399

MF-PCNN5=LF-PCNN+DANN4 774.32+3095.68+58.01=3928.01 0.0173 0.1926

MF-PCNN6=LF-PCNN+GP2 774.32+3095.68+10730.40=14600.40 0.0258 0.0684

The MSE of prediction from the MF-PCNN1 is significantly
lower than that of the LF-PCNN for 𝑡 ∈ ሾ0, 1ሿ. The difference
between the MSEs however decreases for 𝑡 ∈ ሾ1, 2ሿ .
Furthermore, the MSE of prediction at t = 0.5 for the MF-PCNN1
is decreased by about 50%, compared with that of the LF-PCNN.
As for the MF-PCNN2, its MSE of prediction is higher than that
of LF-PCNN when t > 0.5. The MSE of prediction for the MF-
PCNN2 is almost the same as that of the ANN when t > 0.75.
The increased MSE for the MF-PCNN2 is caused by overfitting
since the DANN2 has more neurons than the DANN1. The MSE
of prediction at t = 0 for the MF-PCNN3 is slightly lower than
that of the LF-PCNN. However, the MSE of prediction at t = 0.25
for the MF-PCNN3 is larger that of the LF-PCNN. The MSE of
prediction for the MF-PCNN3 becomes the same as that of the
LF-PCNN when t > 0.5, which means that the GP1 fails to
predict the differences and its output is zero. Notice that t = 0.5
is outside the time range 𝑡 ∈ ሾ0, 0.2ሿ of the HF training data for
the HF-PCNN1. The prediction is based on extrapolation. The
errors indicate that DANNs are more robust than GPs for
extrapolation.

With more training data and physical constraints, the HF-
PCNN2 has two sampling spaces in the temporal dimension,
which are [0, 0.2] and [0.8, 1]. The observed difference between
the predictions of the LF-PCNN and HF-PCNN2 is served as the
training data for the DANN3, DANN4, and GP2. Therefore, the
prediction of the difference between the LF-PCNN and HF-
PCNN at t = 0.5 has become an interpolation problem. Compared
to the MF-PCNN1, the MSE of prediction for the MF-PCNN4 is
the lowest among all ML models for the most of the time. With
more training data, the MSE of prediction for the MF-PCNN5 is
lower than that of the MF-PCNN2. However, the MSE of
prediction for the MF-PCNN5 becomes higher than that of the
MF-PCNN4 when t > 0.25 because of the overfitting. Compared
to the MF-PCNN3, the MSE of prediction for the MF-PCNN6 is
reduced with more training data when 𝑡 ∈ ሾ0.5, 1.25ሿ. However,
the MSE of prediction for the MF-PCNN6 becomes the same as
that of the LF-PCNN when t > 1.25, indicating the failure of
prediction by GP2.

Among all ML models in this work, the MF-PCNN1 is the
best one in comprehensive performance since it has a relatively
low training time and very good accuracy. The good
generalization of the MF-PCNN1 comes from the simpler neural
network structure of the DANN1.

FIGURE 6: The change of MSE of prediction for different ML

models.

4. CONCLUSION

In this work, a new scheme of multi-fidelity physics-
constrained neural networks is proposed to improve the
efficiency of training in neural networks by reducing the required
amount of training data and incorporating physical knowledge as
constraints. Neural networks with two (or more) levels of
fidelities are combined to improve the prediction accuracy. Low-
fidelity networks predict the general trend, whereas high-fidelity
networks model local details and fluctuations. For the concern of
training cost, low-fidelity networks can be trained with low-
fidelity data, and the prediction accuracy can be further improved
with supplementary high-fidelity data. Thus, the training
efficiency is improved from two aspects. The first one is the

 11 © 2019 by ASME

guidance from the physical knowledge, and the second one is a
more cost-effective data collection and sampling strategy.

The physical knowledge can be easily added as the
regularization terms into the total loss functions in neural
networks. The physical constraints then can help reduce the
searching space and guide the searching direction during the
training. The proposed formulation is generic and can be
extended to other machine learning approaches, where
regularization can be similarly applied.

The proposed scheme is demonstrated with two examples of
materials modeling. The PCNN is effective for these two
different types of PDEs with different boundary conditions. The
classical ANN with small training data sets tends to have large
prediction errors. By adding physical constraints, the prediction
accuracy of the PCNN can be one order of magnitude higher than
the one from the classical ANN. Even with limited training data,
the prediction of the PCNN is comparable with the original FEM
solution. The weights associated with physical constraints can be
adjusted to reflect the importance of the prior knowledge. They
also affect the prediction accuracy. It is demonstrated that the
adaptive weighting scheme results in higher prediction accuracy
and shorter training time because the different losses in the total
cost function are well balanced and have a similar convergence
speed. The convergence analysis shows that the required amount
of training data can be reduced by adding more physical
constraints. Based on the computational results, DANNs are
more capable than GPs to do the extrapolation of the difference
between the LF-PCNN and HF-PCNN.

The developed MF-PCNN is an efficient approach to predict
unknown relationships by combining the information from
physical knowledge and available data. The training efficiency
can be significantly improved if the training data from numerical
simulations with different fidelities are utilized to construct MF-
PCNNs. The training data are not limited to numerical simulation
results only. They can also come from experimental
measurements. The costs of experimental measurements can also
be incorporated into the multi-fidelity scheme, where cost-
effective sampling strategies can be taken.

The potential improvement of the current PCNN could be
replacing the ANN to be the Recurrent Neural Network (RNN),
such as long short-term memory (LSTM) neural network. Unlike
feedforward neural networks, RNNs can use their internal state
to process sequences of inputs, which may be more appropriate
to solve time-dependent problems.

The proposed scheme should not be regarded as the
replacement of classical numerical simulation methods (e.g.
finite element and spectral methods) for solving partial
differential equations. Rather, it enhances the efficiency of
engineering design when high-fidelity simulations need to be run
repetitively to obtain samples for design optimization. The
number of samples for optimization for high-dimensional
problem usually is very large. The machine learning approach
therefore only shows its advantage for complex problems with
high-dimensional searching space with the cost of training
justified. The proposed scheme has the potential of making

machine learning useful for real-world engineering applications
where data sparsity is a common issue.

ACKNOWLEDGEMENTS

This work is supported in part by the George W. Woodruff
Faculty Fellowship at Georgia Institute of Technology.

REFERENCES
[1] Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M.,

Banerjee, A., Ganguly, A., Shekhar, S., Samatova, N.,
and Kumar, V., 2017, “Theory-Guided Data Science: A
New Paradigm for Scientific Discovery from Data,”
IEEE Trans. Knowl. Data Eng., 29(10), pp. 2318–2331.

[2] Li-Zhi, L., and Hou-Duo, Q., 1999, “A Neural Network
for the Linear Complementarity Problem,” Math.
Comput. Model., 29(3), pp. 9–18.

[3] Xia, Y., Leung, H., and Wang, J., 2002, “A Projection
Neural Network and Its Application to Constrained
Optimization Problems,” IEEE Trans. Circuits Syst. I
Fundam. Theory Appl., 49(4), pp. 447–458.

[4] Thompson, M. L., and Kramer, M. A., 1994, “Modeling
Chemical Processes Using Prior Knowledge and Neural
Networks,” AIChE J., 40(8), pp. 1328–1340.

[5] Watson, P. M., Gupta, K. C., and Mahajan, R. L., 1998,
“Development of Knowledge Based Artificial Neural
Network Models for Microwave Components,” 1998
IEEE MTT-S Int. Microw. Symp. Dig. (Cat.
No.98CH36192), 1, pp. 9–12.

[6] Wang, F., 1997, “Knowledge-Based Neural Models for
Microwave Design,” IEEE Trans. Microw. Theory
Tech., 45(12 PART 2), pp. 2333–2343.

[7] Tresp, V., Hollatz, J., and Ahmad, S., 1993, “Network
Structuring and Training Using Rule-Based
Knowledge,” Adv. Neural Inf. Process. Syst. 5, pp. 871–
878.

[8] Towell, G. G., and Shavlik, J. W., 1994, “Knowledge-
Based Artificial Neural Networks,” Artif. Intell., 70(1–
2), pp. 119–165.

[9] Ramuhalli, P., Udpa, L., and Udpa, S. S., 2005, “Finite-
Element Neural Networks for Solving Differential
Equations,” IEEE Trans. Neural Networks, 16(6), pp.
1381–1392.

[10] Xu, C., Wang, C., Ji, F., and Yuan, X., 2012, “Finite-
Element Neural Network-Based Solving 3-D
Differential Equations in Mfl,” IEEE Trans. Magn.,
48(12), pp. 4747–4756.

[11] Han, F., and Huang, D. S., 2008, “A New Constrained
Learning Algorithm for Function Approximation by
Encoding a Priori Information into Feedforward Neural
Networks,” Neural Comput. Appl., 17(5–6), pp. 433–
439.

[12] Lauer, F., and Bloch, G., 2008, “Incorporating Prior
Knowledge in Support Vector Regression,” Mach.
Learn., 70(1), pp. 89–118.

[13] Dissanayake, M. W. M. G., and Phan‐Thien, N., 1994,
“Neural‐network‐based Approximations for Solving

 12 © 2019 by ASME

Partial Differential Equations,” Commun. Numer.
Methods Eng., 10(3), pp. 195–201.

[14] Raissi, M., Perdikaris, P., and Karniadakis, G. E., 2018,
“Physics-Informed Neural Networks: A Deep Learning
Framework for Solving Forward and Inverse Problems
Involving Nonlinear Partial Differential Equations,” J.
Comput. Phys., 378, pp. 686–707.

[15] de Cursi, J. E. S., and Koscianski, A., 2007, “Physically
Constrained Neural Network Models for Simulation,”
Adv. Innov. Syst. Comput. Sci. Softw. Eng., pp. 567–
572.

[16] Shirvany, Y., Hayati, M., and Moradian, R., 2009,
“Multilayer Perceptron Neural Networks with Novel
Unsupervised Training Method for Numerical Solution
of the Partial Differential Equations,” Appl. Soft
Comput. J., 9(1), pp. 20–29.

[17] Lagaris, I. E., Likas, A., and Fotiadis, D. I., 1998,
“Artificial Neural Networks for Solving Ordinary and
Partial Differential Equations,” IEEE Trans. Neural
Networks, 9(5), pp. 987–1000.

[18] Shekari Beidokhti, R., and Malek, A., 2009, “Solving
Initial-Boundary Value Problems for Systems of Partial
Differential Equations Using Neural Networks and
Optimization Techniques,” J. Franklin Inst., 346(9), pp.
898–913.

[19] Lagaris, I. E., Likas, A. C., and Papageorgiou, D. G.,
2000, “Neural-Network Methods for Boundary Value
Problems with Irregular Boundaries,” IEEE Trans.
Neural Networks, 11(5), pp. 1041–1049.

[20] McFall, K. S., and Mahan, J. R., 2009, “Artificial Neural
Network Method for Solution of Boundary Value
Problems With Exact Satisfaction of Arbitrary Boundary
Conditions,” IEEE Trans. Neural Networks, 20(8), pp.
1221–1233.

[21] Malek, A., and Shekari Beidokhti, R., 2006, “Numerical

Solution for High Order Differential Equations Using a
Hybrid Neural Network-Optimization Method,” Appl.
Math. Comput., 183(1), pp. 260–271.

[22] Bellamine, F., Almansoori, A., and Elkamel, A., 2015,
“Modeling of Complex Dynamic Systems Using
Differential Neural Networks with the Incorporation of
a Priori Knowledge,” Appl. Math. Comput., 266, pp.
515–526.

[23] Ferrari, S., and Jensenius, M., 2008, “A Constrained
Optimization Approach to Preserving Prior Knowledge
during Incremental Training,” IEEE Trans. Neural
Networks, 19(6), pp. 996–1009.

[24] Di Muro, G., and Ferrari, S., 2008, “A Constrained-
Optimization Approach to Training Neural Networks for
Smooth Function Approximation and System
Identification,” Proc. Int. Jt. Conf. Neural Networks, pp.
2353–2359.

[25] Rudd, K., Muro, G. Di, and Ferrari, S., 2014, “A
Constrained Backpropagation Approach for the
Adaptive Solution of Partial Differential Equations,”
IEEE Trans. Neural Networks Learn. Syst., 25(3), pp.
571–584.

[26] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S., and Corrado, A. Davis, J. Dean, M.
Devin, et al., 2016, “TensorFlow: A System for Large-
Scale Machine Learning.,” 12th USENIX Symp. Oper.
Syst. Des. Implement.

[27] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and
Siskind, J. M., 2015, “Automatic Differentiation in
Machine Learning: A Survey,” J. Mach. Learn. Res., 18,
pp. 1–43.

[28] Lee, D., and Myung, K., 2017, “Read My Lips, Login to
the Virtual World,” 2017 IEEE Int. Conf. Consum.
Electron. ICCE 2017, pp. 434–435.

